The molecular and philogenetic aspects of the patogenesis of Huntington’s disease

Authors

  • V. I. Tsymbalyuk Romodanov Neurosurgery Institute, Kiev, Ukraine
  • V. V. Medvedev Romodanov Neurosurgery Institute, Kiev, Ukraine

Keywords:

Хорея Гентингтона, гентингтин, каспаза, апоптоз, нейродегенерація, динамічна мутація, еволюція, ембріональна нейротрансплантація.

Abstract

Huntington’s chorea is a demielinisated hereditary disease, which is caused by the dynamic mutation of the huntingtin’s gene (4р16-3), that drives to abnormal (more then 37 repetitions) increasing of GAG-triplets number (encodes glutamine). Polyglutamine tracts of the huntingtin acquire ability to interconnect and to activate caspase-8, which initiates apoptosis in the neurons of the brain structures specific for this disease. The evolutional interpretation of this disease origin, as consequence of necessary hungtingtin mutation of, with a view to the limitation of uncontroled mutations rising, that takes place in forced evolution are proposed. In case of Huntington’s disease, a modern method of restoring injured brain structures is a microsurgical politopic transplantation of the necessary type of partially differentiated (in stem-cells cultures) embryonic cells into demaged structures with further formation of intracerebral intercourses intrinsic to ripe neurons of these structures.

References

1. Иллариошкин С.Н., Иванова-Смоленская И.А., Маркова Е.Д. Новый механизм мутации у человека : экспансия тринуклеотидных повторов // Генетика.—1995.—Т.11.—С.1478—1482.

2. Цымбалюк В.И., Верхоглядова Т.П., Слинько Е.И. Нейрохирургическое лечение психических заболеваний.—К.: Здоров’я, 1997.—294 с.

3. Adams J.M., Cary S. The BCL-2 protein femily: arbiters of cell survival // Science.—1998.—V.281.—P.1322—1326.

4. Bjorhson C.R.R., Rietze R.L., Reynolds B.A. et al. Turning brain into blood: a hematopoietic fate adapted by adult neural stem cells in vivo // Science.—1998.—V.283.—P.534—566.

5. Bjorklund A., Svendsen C. Breaking the brain-blood barrier // Naturae.—1999.—V.397.—P.569—570.

6. Browne S.E., Ferrante R.J., Beal M.F. Oxidative stress in Huntington’s disease // Brain Pathol.—1999.—V.9, N1.—P.147—163.

7. Cage F.H., Ray J., Fisher L.I. Isolation, characterization and use of stem cells from the CNS // Annu. Rev. Neurosc.—1995.—V.18.—P.159—192.

8. Fusco F.R., Chen Q., Lamoreaux W.J. et al. Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease // J. Neurosci.—1999.—V.19, N4.—P.1189—1202.

9. Green D.R., Reed J.C. Mitochondria and apoptosis // Science.—1998.—V.281.—P.1309—1312.

10. Gutekunst C.A., Li S.H., Yi H. et al. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human // J. Neurosci.—1998.—V.18, N19.—P.7674—7686.

11. Gutekunst C.A., Li S.H., Yi H. et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology // J. Neurosci.—1999.—V.19, N7.—P.2522—2534.

12. Hazeki N., Nakamura K., Goto J., Kanazawa I. Rapid aggregate formation of the huntingtin N-terminal fragment carrying an expanded polyglutamine tract // Biochem. Biophys. Res. Commun.—1999.—V.256, N2.—P.361—366.

13. Holzmann C., Maueler W., Petersohn D. et al. Isolation and characterization of the rat huntingtin promoter // Biochem. J.—1998.—V.336.—P.227—234.

14. Johanson C. B., Momma S., Clake D.L. et al. Identification of neural stem cell in the adult mammalian central nervous system // Cell.—1999.—V.96.—P.25—34.

15. Karlovich C.A., John R.M., Ramirez L. et al. Characterization of the Huntington’s disease (HD) gene homologue in the zebrafish Danio rerio // Gene.—1998.—V.217.—P.117—25.

16. Li S.H., Gutekunst C.A., Hersch S.M., Li X.J. Association of HAP1 isoforms with a unique cytoplasmic structure // J. Neurochem.—1998.—V.71—P.2178—2185.

17. Liu Y.F. Expression of polyglutamine-expanded huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line // J. Biol. Chem.—1998.—V.273.—P.28873—28877.

18. Maat-Schieman M.L., Dorsman J.C., Smoor M.A. et al. Distribution of inclusions in neuronal nuclei and dystrophic neurites in Huntington disease brain // J. Neuropath. Experim. Neurol.—1999.—V.58.—P.129—137.

19. McKay R. Stem cells in the central nervous system // Science.—1997.—V.276.—P.66—71.

20. Metzler M., Chen N., Helgason C.D. Life without huntingtin: normal differentiation into functional neurons // J. Neurochem.—1999.—V.72, N3.—P.1009—1018.

21. O’Kusky J.R., Nasir J., Cicchetti F. et al. Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington’s disease gene // Brain Research.—1999.—V.818, N2.—P.468—479.

22. Orr H.T., Zoghbi H.Y. Reversing neurodegeneration : a promise unfolds // Cell.—2000.—V.101.—P.57—66.

23. Perez-Navarro E., Arenas E., Marco S., Alberch J. Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic acid excitotoxicity in vivo // Europ. J. Neurosci.—1999.—V.11, N1.—P.241—249.

24. Perez-Severiano F., Escalante B., Rios C. Nitric oxide synthase inhibition prevents acute quinolinate-induced striatal neurotoxicity // Neuroch. Res.—1998.—V.23, N10.—P.1297—1302.

25. Reynolds B.A., Weiss S. Clonal and population analyses demonstrate that EGF-responsive mammalian embryonic precursors is a stem cell // Developmental Biol.—1996.—V.175.—P.1—13.

26. Reynolds B.A., Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system // Science.—1992.—V.255.—P.1707—1710.

27. Sanchez I., Xu C.J., Juo P. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats // Neuron.—1999.—V.22, N3.—P.623—633.

28. Sathasivam K., Hobbs C., Turmaine M. Formation of polyglutamine inclusions in non-CNS tissue // Hum. Molec. Genet.—1999.—V.8, N5.—P.1813—1822.

29. Saudou F., Finkbeiner S., Devys D., Greenberg M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusion // Cell.—1998.—V.95, N1.—P.55—66.

30. Schapira A.H. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia // Biochem. Biophys. Acta.—1999.—V.1410, N2.—P.159—170.

31. Scherzinger E., Sittler A., Schweiger K. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for Huntington’s disease pathology // Proc. Nat. Acad. Sci. USA.—1999.—V.96, N8.—P.4604—4609.

32. Sieradzan K.A., Mechan A.O., Jones L. et al. Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein // Experim. Neurol.—1999.—V.156, N1.—P.92—99.

33. Sittler A., Walter S., Wedemeyer N. et al. SH3GL3 associates with the huntingtin exon 1 protein and promotes the formation of polyglutamine containing protein aggregates // Mol. Cell.—1998.—V.2, N4.—P.427—436.

34. Thornberry N.A., Lazebnik Yu. Caspases: enemies within // Science.—1998.—V.281.—P.1312—1316.

35. Walling H.W., Baldassare J.J., Westfall T.C. Molecular aspects of Huntington’s disease // J. Neurosci. Res.—1998.—V.54, N3.—P.301—308.

36. Yamamoto A., Lucas J.J., Hen R. Reversal of neuropathology end dysfunction in conditional model of Huntington’s disease // Cell.—2000.—V.101.—P.57—66.

How to Cite

Tsymbalyuk, V. I., & Medvedev, V. V. The molecular and philogenetic aspects of the patogenesis of Huntington’s disease. Ukrainian Neurosurgical Journal, (4), 11–16. Retrieved from https://theunj.org/article/view/94520

Issue

Section

Review articles