Intervertebral discs degeneration and methods of its biological correction
DOI:
https://doi.org/10.25305/unj.88759Keywords:
intervertebral discs degeneration, nucleus pulposis, fibrous ring, extracellular matrix, chondrocytes, inflammation process, gene therapy, transplantation of chondrocytes, mesenchymal cells transplantationAbstract
Human physical possibilities limitation caused by intervertebral discs degenerative diseases is a serious medical and social problem in our time. Main signs of intervertebral discs degenerative diseases — cells death, proteoglycane and collagen synthesis decrease. Intervertebral discs degeneration is frequent cause of painful syndrome forming. Today therapy is directed not only on painful syndrome elimination but also on dick’s functions renewing. Modern technologies are frequently based on biological materials using. Injections of proteins activators, biomaterials, different cell types or cell complexes and extracellular matrix, genetically modified cells, and in vitro constructed tissue are used for intravertebral disc regeneration activation. Using one or another therapeutic tactic sufficiently depends on degenerative state expressivity, taking into account the procedure safety.References
Marchand F., Ahmed A.M. Investigation of the laminate structure of lumbar disc anulus fibrosus // Spine. — 1990. — V.15. — P.402–410.
Yu J., Fairbank J.C., Roberts S., Urban J.P. The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc // Spine. — 2005. — V.30, N16. — P.1815–1820.
Inoue H. Three-dimensional architecture of lumbar intervertebral discs // Spine. — 1981. — V.6. — P.139–146.
Yu J., Tirlapur U., Fairbank J. et al. Microfibrils, elastin fibres and collagen fibres in the human intervertebraldisc and bovine tail disc // J. Anat. — 2007. — V.210, N4. — P.460–471.
An H.S., Masuda K., Inoue N. Intervertebral disc degeneration: biological and biomechanical factors // J. Orthop. Sci. — 2006. — V.11, N5. — P.541–552.
Roberts S., Menage J., Duance V. et al. 1991 Volvo Award in Basic Sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study // Spine. — 1991. — V.16. — P.1030–1038.
Crock H.V., Goldwasser M., Yoshizawa H. Vascular anatomy related to the intervertebral disc // The biology of the intervertebral disc / Ed. P. Gosh. — Boca Raton: CRC Press., 1988. — P.109–133.
Lyons G., Eisenstein S.M., Sweet M.B. Biochemical changes in intervertebral disc degeneration // Biochim. Biophys. Acta. — 1981. — V.673. — P.443–453.
Trout J.J., Buckwalter J.A., Moore K.C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus // Anat. Rec. — 1982. — V.204. — P.307–314.
Antoniou J., Mwale F., Demers C.N. et al. Quantitative magnetic resonance imaging of enzymatically induced degradation of the nucleus pulposus of intervertebral discs // Spine. — 2006. — V.31, N14. — P.1547–1554.
Nerlich A.G., Bachmeier B.E. Schleicher E. et al. Immunomorphological analysis of RAGE receptor expression and NF-kappaβ activation in tissue samples from normal and degenerated intervertebral discs of various ages // Ann. N.Y. Acad. Sci. — 2007. — V.1096. — P.239–248.
Banks R.A. Bayliss M.T., Lafeber F.P. et al. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage // Biochem. J. — 1998. — V.30. — P.345–351.
Johnson W.E., Evans H., Menage J. et al. Immunohistochemical detection of Schwann cells in innervated and vascularized human intervertebral discs // Spine. — 2001. — V.26. — P.2550–2557.
Specchia N., Pagnotta A., Toesca A., Greco F. Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine // Eur. Spine. J. — 2002. — V.11. — P.145–151.
Weiler C., Nerlich A.G., Bachmeier B.E., Boos N. Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls // Spine. — 2005. — V.30. — P.44–53.
Saal J.S., Franson R.C., Dobrow R. et al. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations // Spine. — 1990. — V.15. — P.674–678.
Takahashi H., Suguro T., Okazima Y. et al. Inflammatory cytokines in the herniated disc of the lumbar spine // Spine. — 1996. — V.21. — P.218–224.
Burke J.G., Watson R.W., Mc Cormack D. et al. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators // J. Bone Joint Surg. Br. — 2002. — V.84. — P.196–201.
Goupille P., Jayson M.I., Valat J.P. et al. Matrix metalloproteinases: the clue to intervertebral disc degeneration? // Spine. — 1998. — V.23. — P.1612–1626.
Kang J.D., Georgescu H.I., McIntyre-Larkin L. et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2 // Spine. — 1996. — V.21. — P.271–277.
Handa T., Ishihara H., Ohshima H. et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc // Spine. — 1997. — V.22. — P.1085–1091.
Jimbo K., Park J.S., Yokosuka K. et al. Positive feedback loop of interleukin-1beta upregulating production of inflammatory mediators in human intervertebral disc cells in vitro // J. Neurosurg. Spine. — 2005. — V.2. — P.589–595.
Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases // J. Pathol. — 2003. — V.200, N4. — P.448–464.
Liu P., Kalajzic I., Stover M.L. et al. Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation // Bone. — 2001. — V.29. — P.331–335.
Nishida T. Kinetics of tissue and serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 in intervertebral disc degeneration and disc herniation // Kurume Med. J. — 1999. — V.46. — P.39–50.
Kanemoto M., Hukuda S., Komiya Y. et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1human intervertebral discs // Spine. — 1996. — V.21. — P.1–8.
Le Maitre C.L., Pockert A., Buttle D.J. et al. Matrix synthesis and degradation in human intervertebral disc degeneration // Biochem. Soc. Trans. — 2007. — V.35, N4. — P.652–655.
Ariga K., Yonenobu K., Nakase T. et al. Localization of cathepsins D, K, and L in degenerated human intervertebral discs // Spine. — 2001. — V.26. — P.2666–2672.
Gerber A., Wille A., Welte T. et al. Interleukin-6 and transforming growth factor-beta 1 control expression of cathepsins B and L in human lung epithelial cells // J. Interferon Cytokine Res. — 2001. — V.21. — P.11–19.
Nagase H., Fushimi K. Elucidating the function of non catalytic domains of collagenases and aggrecanases // Connect. Tissue Res. — 2008. — V.49, N3. — P.169–174.
Fagan A., Moore R., Vernon Roberts B. et al. ISSLS prize winner: the innervation of the intervertebral disc:a quantitative analysis // Spine. — 2003. — V.28. — P.2570–2576.
Aoki Y., Ohtori S., Takahashi K. et al. Innervation of the lumbar intervertebral disc by nerve growth factor-dependent neurons related to inflammatory pain // Spine. — 2004. — V.29. — P.1077–1081.
Gigante A., Bevilacqua C., Pagnotta A. et al. Expression of NGF, Trka and p75 in human cartilage // Eur. J. Histochem. — 2003. — V.47. — P.339–344.
Freemont A.J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain // Rheumatology. — 2009. — V.48, N1. — P.5–10.
Abe Y., Akeda K., An H.S. et al. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells // Spine. — 2007. — V.32. — P.635–642.
Horner H.A., Urban J.P.G. Effects of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc: 2001 Volvo Award in Basic Science // Spine. — 2001. — V.26, N23. — P.2543–2549.
Boos N. Weissbach S., Rohrbach H. et al. Classification of age-related changes in lumbar intervertebral discs 2002 Volvo Award in Basic Science // Spine. — 2002. — V.27, N23. — P.2631–2644.
Holm S., Baranto A., Kaigle Holm A. et al. Reactive changes in the adolescent porcine spine with disc degeneration due to endplate injury // Vet. Comp. Orthop. Traumatol. — 2007. — V.20, N1. — P.12–17.
Bartels E.M., Fairbank J.C., Winlove C.P. et al. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain // Spine. — 1998. — V.23. — P.1–7.
Cormac T. Taylor Interdependent roles for hypoxia inducible factor and nuclear factor-kB in hypoxic inflammation // J. Physiol. — 2008. — V.586, N17. — P.4055–4059.
Batti M.C., Videman T., Kaprio J. et al. The Twin Spine Study: contributions to a changing view of disc degeneration // Spine J. — 2009. — V.9, N1. — P.47–59.
Videman T., Levlahti E., Batti M.C. The effects of anthropometrics, lifting strength, and physical activities in disc degeneration // Spine. — 2007. — V.32, N13. — P.1406–1413.
Heikkila J.K., Koskenvuo M., Heliovaara M. et al. Genetic and environmental factors in sciatica. Evidence from a nationwide panel of 9365 adult twin pairs // Ann. Med. — 1989. — V.21. — P.393–398.
MacGregor A.J., Andrew T., Sambrook P.N., Spector T.D. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins // Arthritis Rheum.- 2004.- V 51.- P. 160–167.
Jim J.J., Noponen-Hietala N., Cheung K.M. et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration // Spine. — 2005. — V.30. — P.2735–2742.
Karppinen J., Paakko E., Paassilta P. et al. Radiologic phenotypes in lumbar MR imaging for a gene defect in the COL9A3 gene of type IX collagen // Radiology. — 2003. — V.227. — P.143–148.
Noponen-Hietala N., Kyllonen E., Mannikko M. et al. Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis // Ann. Rheum. — 2003. — V.62. — P.1208–1214.
Pluijm S.M., van Essen H.W., Bravenboer N. et al. Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women // Ann. Rheum. Dis. — 2004. — V.63. — P.71–77.
Solovieva S., Lohiniva J., Leino-Arjas P. et al. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine: evidence of gene-environment interaction // Spine. — 2002. — V.27. — P.2691–2696.
An H.S., Takegami K., Kamada H., Nguyen C.M. et al. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits // Spine. — 2005. — V.30. — P.25–31.
Doege K.J., Coulter S.N., Meek L.M. et al. A human-specific polymorphism in the coding region of the aggrecan gene. Variable number of tandem repeats produce a range of core protein sizes in the general population // J. Biol. Chem. — 1997. — V.272. — P.13974–13979.
Seki S., Kawaguchi Y., Chiba K. et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease // Nat. Genet. — 2005. — V.37. — P.607–612.
Solovieva S., Kouhia S., Leino-Arjas P. et al. Interleukin 1 polymorphisms and intervertebral disc degeneration // Epidemiology. — 2004. — V.15. — P.626–633.
Solovieva S., Leino-Arjas P., Saarela J. et al. Possible association of interleukin-1 gene locus polymorphisms with low back pain // Pain. — 2004. — V.109. — P.8–19.
Noponen-Hietala N., Virtanen I., Karttunen R. et al. Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica // Pain. — 2005. — V.114. — P.186–194.
Takahashi M., Haro H., Wakabayashi Y. et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene // J. Bone Joint Surg. Br. — 2001. — V.83. — P.491–495.
Kawaguchi Y., Kanamori M., Ishihara H. et al. The association of lumbar disc disease with vitamin-D receptor gene polymorphism // J. Bone Joint Surg. Am. — 2002. — V.84-A. — P.2022–2028.
Adams M.A., Dolan P. Spine biomechanics // J. Biomech. — 2005. — V.38. — P.1972–1983.
Gruber H.E., Hoelscher G.L., Leslie K. et al. Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production // Biomaterials. — 2006. — V.27, N3. — P.371–376.
Pattison S.T., Melrose J., Ghosh P. et al. Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by transforming growth factor-beta(1)and insulin like growth factor-I // Cell Biol. Int. — 2001. — V.25. — P.679–689.
Thompson J.P., Oegema T.R. Bradford DS stimulation of mature canine intervertebral disc by growth factors // Spine. — 1991. — V.16. — P.253–260.
Gruber H.E., Norton H.J., Hanley E.N. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro // Spine. — 2000. — V.25. — P.2153–2157.
Okuda S., Myoui A., Ariga K. et al. Mechanisms of age-related decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells // Spine. — 2001. — V.26. — P.2421–2426.
Osada R., Ohshima H., Ishihara H. et al. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs // J. Orthop. Res. — 1996. — V.14. — P.690–699.
Takegami K., An H.S., Kumano F. et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis // Spine J. — 2005. — V.5, N3. — P.231–238.
Kawakami M., Matsumoto T., Hashizume H. et al. Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat // Spine. — 2005. — V.30. — P.1933–1939.
Klein R.G., Eek B.C., O’Neill C.W. et al. Biochemical injection treatment for discogenic low back pain: a pilot study // Spine. — 2003. — V.3. — P.220–226.
Wehling P., Schulitz K.P., Robbins P.D. et al. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy // Spine. — 1997. — V.22. — P.1092–1097.
Reinecke J.A., Wehling P., Robbins P. et al. In vitro transfer of genes in spinal tissue // Z. Orthop. Ihre Grenzgeb. — 1997. — Bd.135. — S.412–416.
Nishida K., Kang J.D., Gilbertson L.G. et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene // Spine. — 1999. — V.24. — P.2419–2425.
Kroeber M.W., Unglaub F., Wang H. et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration // Spine. — 2002. — V.27. — P.2684–2690.
Moon S.H., Nishida K., Gilbertson L.G. et al. Biologic response of human intervertebral disc cells to gene therapy cocktail // Spine. — 2008. — V.33, N17. — P.1850–1855.
Ritter T., Lehmann M., Volk H.D. Improvements in gene therapy: averting the immune response to adenoviral vectors // Biodrugs. — 2002. — V.16. — P.3–10.
Somia N., Verma I.M. Gene therapy: trials and tribulations // Nat. Rev. Genet. — 2000. — V.1. — P.91–99.
Lattermann C., Oxner W.M., Xiao X. et al. The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits // Spine. — 2005. — V.30. — P.497–504.
Yoon S.T., Park J.S., Kim K.S. et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo // Spine. — 2004. — V.29. — P.2603–2611.
Paul R., Haydon R.C., Cheng H. et al. Potential use of Sox-9 gene therapy for intervertebral degenerative disc disease // Spine. — 2003. — V.28. — P.755–763.
Moon S.H., Nishida K., Gilbertson L. et al. Biologic response of human intervertebral disc cell to gene therapy cocktail // Orthop. Res. Soc. — 2001. — V.30. — P.883–886.
Wallach C.J., Sobajima S., Watanabe Y. et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs // Spine. — 2003. — V.28. — P.2331–2337.
Maroon J.C. Current concepts in minimally invasive discectomy // Neurosurgery. — 2002. — V.51. — P.137–145.
Ganey T., Hutton W.C., Moseley T. et al. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model // Spine. — 2009. — V.34, N21. — P.2297–2304.
Ganey T.M., Meisel H.J. A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation // Eur. Spine J. — 2002. — V.11, N2. — P.S206–S214.
Sato M., Asazuma T., Ishihara M. et al. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method // Spine. — 2003. — V.28. — P.548–553.
Kuhlcke K., Fehse B., Schilz A. et al. Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels // Mol. Ther. — 2002. — V.5. — P.473–478.
Kramer J., Hegert C., Guan K. et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4 // Mech. Dev. — 2000. — V.92. — P.193–205.
Mason J.M., Breitbart A.S., Barcia M. et al. Cartilage and bone regeneration using gene-enhanced tissue engineering // Clin. Orthop. Relat. Res. — 2000. — V.379, N1. — P.S171–S178.
Akiyama H. Control of chondrogenesis by the transcription factor Sox9 // Modern Rheumatol. — 2008. — V.18, N3. — P.213–219.
Richardson S.M., Walker R.V., Parker S. et al. Intervertebral disc cell mediated mesenchymal stem cell differentiation // Stem Cells. — 2005. — V.24. — P.707–716.
Risbud M.V., Anderson D.G., Shapiro I.M. et al. Cell-based therapy for disc repair // Spine J. — 2005. — V5, N6. — P.297S–303S.
Sakai D., Mochida J., Iwashina T. et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc // Biomaterials. — 2006. — V.27. — P.335–345.
Zhang Y.G., Guo X., Xu P. et al. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans // Clin. Orthop. Relat. Res. — 2005. — V.430. — P.219–226.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 I. G. Vasilyeva, M. V. Khyzhnyak, I. N. Shuba, Yu. G. Gafiychuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.