Intraoperative fluorescence. The view at the surgery of gliomas in the light of innovative technologies
DOI:
https://doi.org/10.25305/unj.61881Keywords:
brain glioma, intraoperative fluorescence, 5-ALA, fluorescein, spectroscopyAbstract
The paper discusses the application of intraoperative fluorescence technique in surgery of cerebral gliomas. The results of clinical studies on the use of the intraoperative fluorescence compared with other intraoperative diagnostic techniques. Also the aspects of the clinical application of the most common fluorophores, the reliability and the ways of improving of intraoperative fluorescence technique were identified.
References
1. Li Y, Rey-Dios R, Roberts D, Valdes PA, Cohen-Gadol AA. Intraoperative fluorescence-guided resection of high-crade cliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014;82(1-2):175-85. [CrossRef] [PubMed]
2. Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA: a Cancer J Clin. 2015;65(1):5-29. [CrossRef] [PubMed]
3. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-Oncol. 2011;13(12):1339-48. [CrossRef] [PubMed]
4. Wolbers JG. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chin J Cancer. 2014;33(1):8-15. [CrossRef] [PubMed]
5. Senft C, Forster M, Bink A, Mittelbronn M, Franz K, Seifert V, Szelenyi A. Optimizing the extent of resection in eloquently located gliomas by combining intraoperative MRI guidance with intraoperative neurophysiological monitoring. J Neuro-Oncol. 2012;109(1):81-90. [CrossRef] [PubMed]
6. Hervey-Jumper S, Berger M. Role of Surgical Resection in Low- and high-grade gliomas. Current Treatment Options in Neurology. 2014;16(4):284. [CrossRef] [PubMed]
7. Duffau H. A new philosophy in surgery for diffuse low-grade glioma (DLGG): oncological and functional outcomes. Neurochirurgie. 2013;59(1):2-8. [CrossRef] [PubMed]
8. Duffau H. Is Supratotal Resection of Glioblastoma in Noneloquent Areas Possible?. World Neurosurgery. 2014;82(1-2):e101-e103. [CrossRef] [PubMed]
9. Eyupoglu I, Hore N, Savaskan N, Grummich P, Roessler K, Buchfelder M, Ganslandt O. Improving the Extent of Malignant Glioma Resection by Dual Intraoperative Visualization Approach. PLoS ONE. 2012;7(9):e44885. [CrossRef] [PubMed]
10. Behbahaninia M, Martirosyan N, Georges J, Udovich JA, Kalani MY, Feuerstein BG, Nakaji P, Spetzler RF, Preul MC. Intraoperative fluorescent imaging of intracranial tumors: a review. Clin Neurol Neurosurg. 2013;115(5):517-28. [CrossRef] [PubMed]
11. Valdes PA, Leblond F, Jacobs VL, Wilson BC, Paulsen KD, Roberts DW. In vivo fluorescence detection in surgery: a review of principles, methods, and clinical applications. Curr Med Imag Rev. 2012;8(3):211-32. [CrossRef]
12. Hefti M, Mehdorn HM, Albert I, Dorner L. Fluorescence-guided surgery for malignant glioma: a review on aminolevulinic acid induced protoporphyrin IX photodynamic diagnostic in brain tumors. Curr Med Imag Rev. 2010;6(4):254-8. [CrossRef]
13. Stummer W, Reulen H, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564-76. [CrossRef] [PubMed]
14. Feigl G, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS. Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg. 2010;113(2):352-7. [CrossRef] [PubMed]
15. Acerbi F, Broggi M, Eoli M, Anghileri E, Cavallo C, Boffano C, Cordella R, Cuppini L, Pollo B, Schiariti M, Visintini S, Orsi C, La Corte E, Broggi G, Ferroli P. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus. 2014;36(2):E5. [CrossRef] [PubMed]
16. Koc K, Anik I, Cabuk B, Ceylan S. Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg. 2008;22(1):99-103. [CrossRef] [PubMed]
17. Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, Sakai N. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. J Neurosurg. 2003;99(3):597-603. [CrossRef] [PubMed]
18. Acerbi F, Cavallo C, Broggi M, Cordella R, Anghileri E, Eoli M, Schiariti M, Broggi G, Ferroli P. Fluorescein-guided surgery for malignant gliomas: a review. Neurosurg Rev. 2014;37(4):547-57. [CrossRef] [PubMed]
19. Eljamel S, Petersen M, Valentine R, Buist R, Goodman C, Moseley H, Eljamel S. Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study. Photodiagn Photodyn Ther. 2013;10(4):356-61. [CrossRef] [PubMed]
20. Panciani P, Fontanella M, Garbossa D, Agnoletti A, Ducati A, Lanotte M. 5-aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurocirugнa. 2012;23(1):23-8. [CrossRef] [PubMed]
21. Della Puppa A, De Pellegrin S, d’Avella E, Gioffre G, Rossetto M, Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza R. 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir. 2013;155(6):965-72. [CrossRef] [PubMed]
22. Roder C, Bisdas S, Ebner F, Honegger J, Naegele T, Ernemann U, Tatagiba M. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: High-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol. 2014;40(3):297-304. [CrossRef] [PubMed]
23. Nishiyama K, Natori Y, Oka K. A novel three-dimensional and high-definition flexible scope. Acta Neurochir. 2014;156(6):1245-9. [CrossRef] [PubMed]
24. Belloch J, Rovira V, Llбcer J, Riesgo P, Cremades A. Fluorescence-guided surgery in high grade gliomas using an exoscope system. Acta Neurochir. 2014;156(4):653-60. [CrossRef] [PubMed]
25. Swanson K, Clark P, Zhang R, Kandela IK, Farhoud M, Weichert JP, Kuo JS. Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery. 2015;76(2):115-24. [CrossRef] [PubMed]
26. Valdes P, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT. Delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology. 2011;13(8):846-856. [CrossRef] [PubMed]
27. Ritz R, Daniels R, Noell S, Feigl GC, Schmidt V, Bornemann A, Ramina K, Mayer D, Dietz K, Strauss WS, Tatagiba M. Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol. 2012;38(4):352-60. [CrossRef] [PubMed]
28. Valdes P, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg. 2011;115(1):11-7. [CrossRef] [PubMed]
29. Ando T, Kobayashi E, Liao H, Maruyama T, Muragaki Y, Iseki H, Kubo O, Sakuma I. Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification. Brain Tumor Pathol. 2010;28(1):43-51. [CrossRef] [PubMed]
30. Schebesch K, Proescholdt M, Hцhne J, Hohenberger C, Hansen E, Riemenschneider MJ, Ullrich W, Doenitz C, Schlaier J, Lange M, Brawanski A. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery — a feasibility study. Acta Neurochir. 2013;155(4):693-9. [CrossRef] [PubMed]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Volodymyr Rozumenko, Artem Rozumenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.