Future trends of nanotechnologies in neurosurgery


  • Vitaliy Tsymbaliuk Romodanov Neurosurgery Institute, Kiev, Ukraine https://orcid.org/0000-0001-7544-6603
  • Ivan Chekman Bogomolets National Medical University, Kiev, Ukraine
  • Konstantin Kremets Romodanov Neurosurgery Institute, Kiev, Ukraine




nanotechnology, nanomedicine, nanosurgery, nanoparticles, neurosurgery


Nanomedicine is rapidly evolving science that deals with development and application of nanotechnologies in clinical medicine. Neurosurgery is one of the most advanced medical fields and there are no doubts that in the nearest future nanotechnological advances will be widely used in this sphere. Treatment of such neurological diseases as tumors, stroke, trauma and their consequences is not always effective. Nanotechnologies offer new interesting solutions to some of these problems. Main advances of nanotechnology and nanomedicine, which are relevant to neurosurgery, are reviwed.


Чекман І.С. Нанонаука: історичний аспект, перспективи досліджень / І.С. Чекман // Укр. мед. часопис. — 2009. — №3(71). — С.86–91.

Нанотехнології, наномедицина: перспективи наукових досліджень та впровадження їх результатів у медичну практику [Л.Г. Розенфельд, В.Ф. Москаленко, І.С. Чекман, Б.О. Мовчан] // Укр. мед. часопис. — 2008. — №5(67). — С.63–68.

Nano hemostat solution: immediate hemostasis at the nanoscale / R.G. Ellis-Behnke, Y.X. Liang, D.K. Tay [et al.] // Nanomedicine. — 2006. — V.2, N4. — P.207–215.

Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons / L.L. Dugan, J.K. Gabrielsen, S.P. Yu [et al.] // Neurobiol. Dis. — 1996. — V.3, N2. — P.129–135.

Fullerene-based antioxidants and neurodegenerative disorders / L.L. Dugan, E.G. Lovett, K.L. Quick [et al.] // Parkinsonism Relat. Disord. — 2001. — V.7, N3. — P.243–246.

Carboxyfullerenes as neuroprotective agents / L.L. Dugan, D.M. Turetsky, C. Du [et al.] // Proc. Natl. Acad. Sci. USA. — 1997. — V.94, N17. — P.9434–9439.

Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents / H. Jin, W.Q. Chen, X.W. Tang [et al.] // J. Neurosci. Res. — 2000. — V.62. — P.600–607.

Malarkey E.B. Applications of carbon nanotubes in neurobiology / E.B. Malarkey, V. Parpura // Neurodegener. Dis. — 2007. — V.4, N4. — P.292–299.

Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. / G. Cellot, E. Cilia,S. Cipollone[et al.] // Nat. Nanotechnol. — 2009. — V.4, N2. — P.126–133.

Neural stimulation with a carbon nanotube microelectrode array / K. Wang, H.A. Fishman, H. Dai, J.S. Harris // Nano Lett. — 2006. — V.6, N9. — P.2043–2048.

Three dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells / M.K. Horne, D.R. Nisbet, J.S. Forsythe, C. Parish // Stem Cells Dev. — 2009. — Oct.15. [Epub ahead of print].

Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision Where do we go from? / R.G. Ellis-Behnke, Y.S. Liang, S. You [et al.] // Nanomedicine: Nanotechnol. Biol. Med. — 2005. — V.2, N4. — P.317.

Microscale surgery on single axons / D.W. Sretavan, W. Chang, E. Hawkes [et al.] // Neurosurgery. — 2005. — V.57, N4. — P.635–646.

In vivo use of a nanoknife for axon microsurgery / W.C. Chang, E.A. Hawkes, M. Kliot, D.W. Sretavan // Neurosurgery. — 2007. — V.61, N4. — P.683–691.

Near infrared laser-tissue welding using nanoshells as an exogenous absorber / A.M. Gobin, D.P. O’Neal, D.M. Watkins [et al.] // Lasers Surg. Med. — 2005. — V.37, N2. — P.123–129.

Прискока А.О. Нанотехнології у розробці систем доставки лікарських засобів / А.О. Прискока, І.С. Чекман // Укр. мед. часопис. — 2010. — №1(75). — C.14–18.

Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles / R.N. Alyautdin, V.E. Petrov, K. Langer [et al.] // Pharm Res. — 1997. — V.14, N3. — P.325–328.

Kreuter J. Use of nanoparticles for cerebral cancer / J. Kreuter,S. Gelperina// Tumori. — 2008. — V.94, N2. — P.271–277.

Kreuter J. Nanoparticulate systems for brain delivery of drugs / J. Kreuter // Adv. Drug. Deliv. Rev. — 2001. — V.47, N1. — P.65–81.

In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes / C. Sun, O. Veiseh, J. Gunn [et al.] // Small. — 2008. — V.4, N3. — P.372–379.

Optical and MRI multifunctional nanoprobe for targeting gliomas / O. Veiseh, C. Sun, J. Gunn [et al.] // Nano Lett. — 2005. — V.5, N6. — P.1003–1008.

Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer / P. Juzenas, W. Chen, Y.P. Sun [et al.] // Adv. Drug. Deliv. Rev. — 2008. — V.60, N15. — P.1600–1614.

Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy / X.H. Peng, X. Qian, H. Mao [et al.] // Int. J. Nanomed. — 2008. — V.3, N3. — P.311–321.

Roy I. Nonviral gene transfection nanoparticles: function and applications in the brain / I. Roy, M.K. Stachowiak, E.J. Bergey // Nanomedicine. — 2008. — V.4, N2. — P.89–97.

Elder J.B. Neurosurgery in the realm of 10(-9), Part 2: applications of nanotechnology to neurosurgery. — present and future / J.B. Elder, C.Y. Liu, M.L. Apuzzo // Neurosurgery. — 2008. — V.62, N2. — P.269–285.

Singh N. Treatment of neurodegenerative disorders with radical nanomedicine / N. Sighn, C.A. Cohen, D.F. Rzigalinski //Ann. N.Y. Acad. Sci. — 2007. — N1122. — P.219–230.

Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases / C. Zhengrong, P.R. Lockmanb, C.S. Atwoodc [et al.] // Eur. J. Pharm.Biopharm. — 2005. — V.59, N2. — P.263–272.



How to Cite

Tsymbaliuk, V., Chekman, I., & Kremets, K. (2011). Future trends of nanotechnologies in neurosurgery. Ukrainian Neurosurgical Journal, (2), 4–8. https://doi.org/10.25305/unj.57880



Review articles