Metabolism features in the injured hemisphere after experimental traumatic brain injury and transplantation of fetal neural tissue

Authors

  • Boris Baranenko Donetsk Regional Clinical Territorial Medical Association, Donetsk, Ukraine
  • Vitaliy Tsymbaliuk Romodanov Neurosurgery Institute, Kiev, Ukraine https://orcid.org/0000-0001-7544-6603
  • Irina Vasileva Romodanov Neurosurgery Institute, Kiev, Ukraine
  • Nataliya Chopik Romodanov Neurosurgery Institute, Kiev, Ukraine

DOI:

https://doi.org/10.25305/unj.51526

Keywords:

severe traumatic brain injury, transplantation of fetal neural tissue, catecholamines, indolamines, GABA, apoptosis, experiment

Abstract

Objective — to determine the phospholipid and neurotransmitter composition of the left (injured) hemisphere cortex in rats in a month after traumatic brain injury (TBI), and impact of fetal neural tissue (FNT) transplantation on these indexes.

Methods. Severe TBI was modeled in inbred male adult rats. Transplantation of 18-day-old embryos FNT was performed 2 hours after TBI. Indole- and catecholamines were detected by high performance liquid chromatography; GABA — by condensation with ortho-phthalaldehyde; phospholipid fractions — by thin layer chromatography; Bax gene expression — by polymerase chain reaction with reverse transcription.

Results. It was found that severe TBI reduced mass of the injured hemisphere and content of dophamine neurotransmitters, norepinephrine, serotonin, redistribution of phospholipids fractions was noted, as well as increase of level of pro-apoptotic Bax gene in the injured hemisphere, indicating destructive processes in the remote period after TBI. FNT transplantation promoted normalization of most parameters investigated.

Conclusions. FNT transplantation in experimental animals with severe TBI contributes to the normalization of neurotransmitter and phospholipid composition of the injured hemisphere.

Author Biographies

Boris Baranenko, Donetsk Regional Clinical Territorial Medical Association, Donetsk

2nd Neurosurgery Department

Vitaliy Tsymbaliuk, Romodanov Neurosurgery Institute, Kiev

Restorative Neurosurgery Department

Irina Vasileva, Romodanov Neurosurgery Institute, Kiev

Neurobiochemistry Department

Nataliya Chopik, Romodanov Neurosurgery Institute, Kiev

Neurobiochemistry Department

References

1. Freire MA. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med J. 2012;61(7):751-5. [PubMed]

2. Heath DL, Vink R. Secondary mechanisms in traumatic brain injury: a nurse’s perspective. J Neurosci Nurs. 1999;31(2):97-105. [CrossRef]

3. Trofimov AO, Kravets LYa. Apoptoz neyronov pri cherepno-mozgovoy travme [Neurons apoptosis at the brain injury]. Sovremen Tekhnologii v meditsine. 2010;3:92-7. Russian.

4. Salehpoor F, Bazzazi AM, Estakhri R, Zaheri M, Asghari B. Correlation between catecholamine levels and outcome in patients with severe head trauma. Pak J Biol Sci. 2010;13(15):738-42. [PubMed] [CrossRef]

5. Kobori N, Hu B, Dash PK. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience. 2011;172:293-302. [PubMed] [CrossRef]

6. Shin SS, Bray ER, Zhang CQ, Dixon CE. Traumatic brain injury reduces striatal tyrosine hydroxylase activity and potassium-evoked dopamine release in rats. Brain Res. 2011;1369:208-15. [PubMed] [CrossRef]

7. Shevaga VN. Ranniye i otdalennyye posledstviya cherepno-mozgovoy travmy: mediko-sotsial'nyye aspekty i vozmozhnosti neyroprotektsii [Early and long-term consequences of traumatic brain injury: medical and social aspects, and the possibility of neuroprotection]. Zdorovja Ukrainy. 2009;5:45. Russian.

8. Patt S, Brodhun N. Neuropathological sequelae of traumatic injury in the brain. An overview. Exp Toxicol Pathol. 1999;51(2):119-23. [PubMed] [CrossRef]

9. Kanelos SK, Mc Deavitt JT. Neural transplantation: potential role in traumatic brain injury. J Head Trauma Rehabil. 1998;13(6):1-9. [PubMed] [CrossRef]

10. Hattiangady B, Shetty AK. Neural stem cell grafting counteracts hippocampal injury-mediated impairments in mood, memory, and neurogenesis. Stem Cells Transl Med. 2012;1(9):696-708. [PubMed] [CrossRef]

11. Elder GA, De Gasperi R, Gama Sosa MA. Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med. 2006;73(7):931-40. [PubMed]

12. Richardson RM, Sun D, Bullock MR. Neurogenesis after traumatic brain injury. Neurosurg Clin N Am. 2007;18(1):169-81. [PubMed] [CrossRef]

13. Bonfanti L, Peretto P. Adult neurogenesis in mammals - a theme with many variations. Eur J Neurosci. 2011;34(6):930-50. [PubMed] [CrossRef]

14. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010;30(5):1657-76.

15. Tsimbalyuk VI, Medvedev VV. Neyrohenni stovburovi klityny u nevrolohiyi ta neyrokhirurhiyi [Neural stem cells in neurology and neurosurgery]. Zhurn NAMN Ukrainy. 2011;17(1):76-80. Ukrainian.

16. Tsimbalyuk VI, Vasil’eva IG, Chopik NG, Galanta ES, Tsyubko OI, Oleksenko NP, Vashulenko TN. Neyrotroficheskiye faktory v embrional'nom mozge cheloveka 5–9 nedel' gestatsii [Neurotrophic factors in the embryonic human brain 5-9 weeks of gestation]. In: Abstract Book of the III Congress of Neurosurgeons of Ukraine; 2003 September 23-25; Alushta, Ukraine. Kiev; 2003. p.199. Russian.

17. Kopiov OV. Ul'trastrukturnyy i ul'tratsitokhimicheskiy analiz eksperimental'nogo sotryaseniya mozga [Ultrastructural analysis of the experimental and ultracytochemical concussion] [dissertation]. Kiev (Ukraine): Romodanov Neyrosurgery Institute; 1988. Russian.

18. Tsymbalyuk VI, Semenova VM, Senchyk YuYu, Medvedev VV. [Pathomorphological characteristics of cerebellum hemisphere dosed traumatic injury model in the experiment]. Ukrainian Neurosurgical Journal. 2010;1:24-29. Ukrainian. [eLIBRARY.ru]

19. Bonetskij AA, Fedorov VI. Opredeleniye katekholaminov plazmy krovi metodom vysokoeffektivnoy zhidkostnoy khromatografii na mikrokolonochnom khromatografe “Millikhrom” [Determination of plasma catecholamines by HPLC chromatography on a microcolumn "Millichrome"]. Lab. Delo. 1989;4:21-5. Russian.

20. Lingren S, Andrem ME, Grabovska-Andren MA. Fluorimetric method for determination of GABA in tissue following cation exchange chromatography and condensation with o-phtalaldehyde. J Neur Transmis. 1982;55:243-52. [CrossRef]

21. Kates M. Techniques of lipidology. Amsterdam, New-York: Oxford; 1986.

22. Klemens M. Vydeleniye eukarioticheskoy matrichnoy RNK (mRNK) [Isolation of eukaryotic messenger RNA (mRNA)]. In: Kheims B, Khiggins S., editors. Transkriptsiya i translyatsiya. Metody [Transcription and translation. Methods]. Moscow : Mir; 1987. p.254-75.

23. Benyi L, Ping Dou Q. Bax degradation by the ubiquitin/proteasome-dependent pathway: Involvement in tumor survival and progression. PNAS USA. 2000;97(8):3850-5. [PubMed] [CrossRef]

24. Vasil’eva IG, VAsil’ev AN, Kostiuk MR. Sovremennyye predstavleniya o patogeneze zakrytoy cherepno-mozgovoy travmy [Modern understanding of the pathogenesis of closed craniocerebral injury]. Pedachenko EG., editor. Kiev: TOV “Zadruga”; 1996. Russian.

25. Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids. 2000;106(1):1-29. [PubMed] [CrossRef]

26. Rebrova TYu, Kondrat’eva DS, Afanasiev SA. Osobennosti fosfolipidnogo sostava membran eritrotsitov v usloviyakh postinfarktnogo kardioskleroza [Features of phospholipid composition of erythrocyte membranes at myocardial infarction]. Sib Med Zhurn. 2011;26(1):131-4. Russian.

27. Romodanov AP, Kopiov OV, Tsymbaliuk VI. Vliyaniye transplantatsii embrional'nogo neokorteksa na vyzhivayemost' krys posle tyazheloy cherepno-mozgovoy travmy [Effect of fetal neocortex transplantation on rats survival after severe traumatic brain injury]. In: Abstract Book of the III International Congress “Functional Neurosurgery”; 1990 May 28-30; Tbilisi, Georgia. Tbilisi; 1990. p.247. Russian.

28. Tsymbaliuk VI, Shcherba IN, Gordienko OV. Vliyaniye transplantatsii embrional'noy nervnoy tkani na dinamiku oteka golovnogo mozga pri eksperimental'noy cherepno-mozgovoy travme [Effect of embryonic neural tissue transplantation on the dynamics of cerebral edema in experimental traumatic brain injury]. Nejrofiziologia. 1998;30(3):206-11. Russian.

29. Tsymbaliuk VI, Vasil’eva IG, Chopik NG. Vliyaniye neyrotransplantatsii na soderzhaniye katekholaminov v strukturakh golovnogo mozga krys posle cherepno-mozgovoy travmy [Neurotransplantation effect on catecholamines level in the brain structures of rats after traumatic brain injury]. Nejrofiziologia. 1998;30(2):36-40. Russian.

30. Tsymbaliuk VI, Vasil’eva IG, Chopik NG. Neyromediatory holovnoho mozku shchuriv u posttravmatychnomu periodi ta vplyv na nykh transplantatsiyi nervovoyi tkanyny sensomotornoyi kory 18-dennykh embrioniv [Neurotransmitters in the brain of rats in post-traumatic period and their effect on transplantation of nervous tissue of sensory motor cortex of 18-day-old embryos]. Transplantologia. 2001:2(1):48-53. Ukrainian.

Published

2015-10-14

How to Cite

Baranenko, B., Tsymbaliuk, V., Vasileva, I., & Chopik, N. (2015). Metabolism features in the injured hemisphere after experimental traumatic brain injury and transplantation of fetal neural tissue. Ukrainian Neurosurgical Journal, (1), 26–31. https://doi.org/10.25305/unj.51526

Issue

Section

Original articles