Neuronavigation technology of virtual 3D planning and intraoperative tracking of laser thermodestruction in surgery of intra-axial brain tumors
DOI:
https://doi.org/10.25305/unj.50117Keywords:
brain tumor, neuronavigation, virtual surgery planning, laser thermodestructionAbstract
Objective. Optimization of surgical treatment in patients with intra-axial brain tumors using advanced laser and navigation technologies.
Materials and methods. A total of 148 patients with tumors in eloquent brain areas were operated with the use of laser thermodestruction in the integration with multimodal neuronavigation. The laser destruction of tumor tissue was performed using a semiconductor laser surgical device “Lika-Chirurg” and “Lika-Chirurg M” and the navigation system «StealthStation TREON Rlus.”
Results. Total resection of tumor was performed in 62 (41.9%) patients, subtotal - in 72 (48.6%), partial - in 14 (9.5%). The group of patients with Karnofsky Performance Scale Index 70 increased from 64.3% to 87.5% in postoperative period.
Conclusions. The method of laser thermodestruction accompanied by multimodal neuronavigation in patients with tumors in eloquent brain areas helps to increase the extent of resection, prevent surgical trauma and provides high levels of postoperative quality of life.
References
1. Ascher PW. Der CO2 laser in der Neurochirurgie. Munich: Molden; 1977. Deutch.
2. Jain KK. Handbook of laser neurosurgery. Springfield: C.C. Thomas; 1983.
3. Krishnamurthy S, Powers SK. Laser in Neurosurgery. Lasers Surg. Med. 1994;15(2):126-167. [CrossRef] [PubMed]
4. Rozumenko VD. [Laser surgery of brain tumors]. Fotobiologiya ta fotomedytsyna. 2010;(3-4):16-22. Russian.
5. Rozumenko VD, Kholin VV, Taranov VV. Primeneniye sovremennykh lazernykh tekhnologiy v khirurgii glial'nykh opukholey golovnogo mozga [The use of modern laser technologies in surgery of glial brain tumors]. Fotobiologiya ta fotomedytsyna. 2007;(1-2):14-21. Russian.
6. Scott Litofsky N, Bauer AM, Kasper RS, Sullivan CM, Dabbous OH. Image-guided resection of high-grade glioma: patient selection factors and outcome. Neurosurg. Focus. 2006;20(4):16. [CrossRef] [PubMed]
7. Rozumenko VD, Rozumenko AV. [Multimodal neuronavigation using in surgery of brain tumors]. Ukrainian Neurosurgical Journal. 2010;(4):51-57. Russian.
8. Rozumenko VD, Rozumenko AV. Lazernaya destruktsiya opukholey funktsional'no vazhnykh zon golovnogo mozga pod kontrolem neyronavigatsii [Laser destruction of tumors in functionally important regions of the brain under neuronavigation control]. In: Abstract Book of the 35th International Conference “Lasers use in medicine and biology”; 2011 May 25-28; Kharkov, Ukraine. Kharkov, 2011. p.106-107. Russian.
9. Nimsky C, Kuhnt D, Ganslandt O, Buchfelder M. Multimodal navigation integrated with imaging. Acta. Neurochir. Suppl. 2011;109:207-214. [CrossRef] [PubMed]
10. Gonzalez–Darder JM, Gonzalez–Lopez P, Talamantes F, Quilis V, Cortes V, Garcia-March G, Roldan P. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg. Focus. 2010;28(2)L:5. [CrossRef] [PubMed]
11. Rozumenko VD, Rozumenko AV, Yavorskij AA, Bobryk IS. [Multimodal neuronavigation in preoperative planning and intraoperative orientation in brain tumors surgery]. Ukrainian Neurosurgical Journal. 2014;(4):23-31. Russian. [Abstract/Full Text]
12. Rozumenko VD. Romodanov Neurosurgery Institute, Kiev, Ukraine, assignee. Surgical neuronavigation system. Ukraine Patent 43428a. 2009 August 10.
13. Rasmussen IA, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Haberg A, Unsgaard G. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir. 2007;149(4):365-378. [CrossRef] [PubMed]
14. Saunders ML, Young HF, Becker DP, Greenberg RP, Newlon PG, Corales RL, Ham WT, Povlishock JT. The use of the laser in neurological surgery. Surg. Neurol. 1980;14(1):1-10. [PubMed]
15. Strait TA, Robertson JH, Clark WC. Use of the carbon dioxide laser in the operative management of intracranial meningiomas: a report of twenty cases. Neurosurgery. 1982;10(4):464-7. [CrossRef] [PubMed]
16. Rozumenko VD, Othman O. [Differentiated utilizing of laser technologies in the surgery of cerebral hemisphere gliomas]. Ukrainian Neurosurgical Journal. 2004;(1):26-33. Russian.
17. Bahary JP, Larson DA. Radiotherapy, hyperthermia and phototherapy for central nervous system tumors. Curr. Opin. Oncol. 1992;4(3):515-517. [CrossRef] [PubMed]
18. Bidnenko VN, Sigal VL, Rozumenko VD. Otsenki dlya intraoperatsionnogo vybora i kontrolya rezhimov interstitsial'noy termoterapii opukholey mozga [Estimation of intraoperative choice and control modes of interstitial thermotherapy of brain tumors]. Dopovidi NAN Ukrayiny. 2001;1:104-110. Russian.
19. Nosov AT, Rozumenko VD, Semenova VM, Medyanik IO. Morfofunktsionalni zminy mozku pry diyi vyprominyuvannya vysokoenerhetychnykh vuhlekyslotnoho, neodymovoho-AIH ta holmiyevoho lazeriv [Morphological and functional changes in the brain at high carbon dioxide emission, neodymium-AIG and Holmium lasers]. Byul. Ukr. Asots. Neyrokhirurhiv. 1998;5:136-137. Ukrainian.
20. Rozumenko VD, Semenova VM, Nosov AT, Khomenko AV, Vaslovich VV, Tyagliy SV, Othman O. [Morphological substantiation of application of a method laser thermodestruction in neurooncology]. Ukrainian Neurosurgical Journal. 2003;(2):27-32. Russian.
21. Rossomoff HL, Carroll F. Reaction of neoplasm and brain on laser. Arch. Neurol. 1966;14(2):143-148. [CrossRef] [PubMed]
22. Rozumenko VD, Semyonova VM, Othman O. The brain and glial tumors tissue morphology changes under the highly energetic radiation of CO2 and Nd-YAG lasers influence. Ukrainian Neurosurgical Journal. 2004;(3):37-42. Russian.
23. Goebel KR. Fundamentals of laser science. Acta Neurochir. 1994;61:20-33. [CrossRef] [PubMed]
24. Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J. Neurosurg. 2006;104(3):360-368. [CrossRef] [PubMed]
25. Kurimoto M, Hayashi N, Kamiyama H, Nagai S, Shibata T, Asahi T, Matsumura N, Hirashima Y, Endo S. Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study. Minim. Invas. Neurosurg. 2004;47(5):278-283. [CrossRef] [PubMed]
26. Robаk KО, Chuvashova OYu. [MR-tractography method: modern features of visualization and use in neurosurgical practice]. Ukrainian Neurosurgical Journal. 2014;(3):72-78. Ukrainian. [Abstract/Full Text]
27. Qiu TM, Zhang Y, Wu JS, Tang WJ, Zhao Y, Pan ZG, Mao Y, Zhou LF. Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir. (Wien). 2010;152(11):1847-1857. [CrossRef] [PubMed]
28. Makeev SS, Rozumenko VD, Chuvashova OYu, Rozumenko AV. [The capabilities of simultaneous use of SPECT and MRI findings at removal of brain tumors using neuronavigation]. Ukrainian Journal of Radiology. 2010;18(3):307-311. Ukrainian.http://medradiologia.kharkov.ua/assets/files/arch/2010/3/p307_311.pdf. <a href=">[eLIBRARY]
29. Rozumenko VD, Khoroshun AP, Rozumenko AV inventors; Rozumenko VD, Kiev, Ukraine, assignee. The method of laser-surgical removal of tumors of the brain hemispheres with navigation support. Ukraine Patent 63624A. 2011 October 10.
30. Rozumenko VD inventor; Rozumenko VD, Kiev, Ukraine, assignee. The method of laser removal of intracerebral tumors by Rozumenko VD. Ukraine Patent 79276A. 2013 April 25.
31. Eljamel MS, Goodman C, Moseley H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci. 2008;23(4):361-367. [CrossRef] [PubMed]
32. Eyupoglu IY, Hore N, Savaskan NE, Grummich P, Roessier K, Buchfelder M, Ganslandt O. Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One. 2012;7(9):44885. [CrossRef] [PubMed]
33. Grunert P, Oertel J. Technical and clinical evolution of modern neuroendoscopy. In: Iancu C., editor. Advances in Endoscopic Surgery. Croatia: InTech; 2011. p.175-190. [CrossRef]
34. Caird JD, Drake JM. Technical aspects of image-guided neuroendoscopy. In: Lozano Am, Gildenberg PL, Tasker RR, editors. Textbook of Stereotactic and Functional Neurosurgery. Berlin: Springer-Verlag; 2009. p.807-814.
35. Mang TS. Combination studies of hyperthermia induced by the Nd:YAG laser as an adjuvant to photodynamic therapy. Laser Surg Med. 1990;10(2):173-178. [CrossRef] [PubMed]
36. Bidnenko VN, Sigal VL, Rozumenko VD. Theoretical estimations of the area of destruction in brain tumors under photodynamic therapy. In: Tuchin VV, editor. Controlling Tissue Optical Properties: Applications in Clinical Study: Proc. SPIE 4162; 2000 July 4; Amsterdam, Netherlands. USA: SPIE-Intl Soc Optical Eng; 2000 Nov 3. [CrossRef]
37. Fedulov AS, Sakovich II, Sliakhtsin SV, Trukhachova TV. Photodynamic therapy of 44 high-grade gliomas with Photolon®. Results of the open-label randomized clinical trial. Photodiagnosis and Photodynamic Therapy. 2008;5:7. [CrossRef]
38. Posokhov NF, Stranadko EF, Mkhajlov AI, Makarov VN, Bajda RN, Bondar’ BE. Fotodinamicheskaya terapiya bol'nykh so zlokachestvennymi novoobrazovaniyami nervnoy sistemy [Photodynamic therapy in patients with malignant tumors of the nervous system]. In: Abstract Book of Int. symposium “Experimental and clinical aspects of photodynamic therapy”; 2013 March 15-16; Cherkassy, 2013. p.21-29. Russian.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Volodymyr Rozumenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.