Peculiarities of nonheme iron metabolism in patients bearing glial brain tumours

Authors

  • Yuriy Zozulya Romodanov Neurosurgery Institute, Kiev, Ukraine https://orcid.org/0000-0002-0573-2740
  • O. Mykhaylyk Institute of Applied Physics and Biophysics, Academy of Sciences of Ukraine, Kiev, Ukraine
  • Volodymyr Rozumenko Romodanov Neurosurgery Institute, Kiev, Ukraine
  • Ariada Cherchenko Romodanov Neurosurgery Institute, Kiev, Ukraine
  • N. Dudchenko Institute of Applied Physics and Biophysics, Academy of Sciences of Ukraine, Kiev, Ukraine
  • E. Lebedev Taras Shevchenko National University, Kiev, Ukraine
  • B. Shurunov Taras Shevchenko National University, Kiev, Ukraine

Keywords:

glial tumors of the human brain, metabolism of non-heme iron, the iron is ferritin, iron, capable of chelate, iron transferrin, method of quantitative spectroscopy electron spin resonance

Abstract

Nonheme iron indices in the blood and brain tissues have been determined in a group of patients bearing glial brain tumours by quantitative electron spin resonance spectroscopy. Hyperferremia (statistically significant increase in transferrin iron concentration in the blood and plasma as well as in transferrin saturation in the blood relative to the reference data) and also an increase in ferritin iron concentration in the tumour and peritumoral brain tissue relative to respective values determined in the blood and in the adjacent apparently normal brain tissue are characteristics of malignant glial brain tumours in human beings. The revealed peculiarities of nonheme iron metabolism point to the new potentially useful approaches to glial brain tumour diagnosis using a set of iron exchange parameters and therapy using iron chelators as promising antiprolifirative agents. The question have to be arisen about iron overload as a risk factor for glial brain tumours in human beings and the genetic predisposition for glial brain cancer associated with homo- or heterozygosity at the HFE locus.

References

1. Dudchenko NO, Mykhaĭlyk OM. [Quantification of chelatable iron in biological tissue by electron spin spectroscopy]. Ukr Biokhim Zh. 1999 May-Jun;71(3):122-8. Ukrainian. [PubMed]

2. Zozulya Y, Cherchenko A, Mykhaylyk O. [Features of distribution of iron in ferritin and low part of complexes in different parts of the brain]. Dopovidi NAN Ukrayiny. 1998; 2: 194-200. Russian.

3. Kopanev V, Ginsburg E, Semenova М. [Methods Of Probabilistic Assessment Of Toxic Effect]. Novosibirsk; 1988. Russian.

4. Levina A, Andreyeva A, Cybulska M. et al. [On the question of total iron binding capacity transferrin and gipersideremiyah]. Gematologiya. 1992; 4: 13-16. Russian.

5. Aisen P, Pinkowitz R, Leibman A. EPR and other studies of the iron-binding sites of transferrin. Annals of the New York Academy of Sciences. 1973; 222(1 Electron Spin): 337-346. [CrossRef]

6. Barja de Quiroga G., Perez-Campo R., Lopez-Torres M. Antioxidant defences and peroxidation in liver and brain of aged rats. Biochem J. 1990 Nov 15; 272 (1): 247-250. [PubMed]

7. Baynes R. Iron deficiency. In: Iron Metabolism In Health And Disease. 1st ed. London, UK: Saunders Co Ltd; 1994: 189-225.

8. Beard J.L., Connor J.R., Jones B.C. Iron in the brain. Nutr Rev. 1993 Jun; 51(6): 157-70. [PubMed]

9. Brodie C., Siriwardana G., Lucas J. et al. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle. Cancer Res. 1993 Sep 1; 53(17): 3968-3975. [PubMed]

10. Connor J, Fine R. The distribution of transferrin immunoreactivity in the rat central nervous system. Brain Research. 1986;368(2):319-328. [CrossRef]

11. Connor J, Menzies S, Martin S, Mufson E. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research. 1990;27(4):595-611. [CrossRef]

12. Connor J. Proteins of iron regulation in the brain in Alzheimer’s disease. In: Lauffer R, ed. Iron And Human Disease. 1st ed. Florida, USA: CRC Press Inc.; 1993:365-393.

13. Connor J. Cellular and Regional maintenance of iron homeostasis in the brain: normal and diseased states. In: Riederer P, Youdium M, ed. Iron In Central Nervous System Disorders. 1st ed. N.-Y., USA: Springer-Verlag; 1993:1-18.

14. Cooper C, Brown G. The Interactions between Nitric Oxide and Brain Nerve Terminals as Studied by Electron Paramagnetic Resonance. Biochemical and Biophysical Research Communications. 1995;212(2):404-412. [CrossRef]

15. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content?. American Journal of Roentgenology. 1987;149(2):357-363. [CrossRef]

16. Durken M, Neubauer F, Ehgelhardt R. Iron overload in longterm survivors after bone marrow transplantation. In: Abstract Of An Oral Report At The World Congress On Iron Metabolism BIOIRON’99 (May 23—28).; 1999:110.

17. Dwork A, Schon E, Herbert J. Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience. 1988;27(1):333-345. [CrossRef]

18. Dwork A, Lawler G, Zybert P et al. An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Research. 1990;518(1-2):31-39. [CrossRef]

19. Evans P.H. Free radicals in brain metabolism and pathology. Br Med Bull. 1993 Jul; 49(3): 577-587. [PubMed]

20. Feder J, Penny D, Irrinki A et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proceedings of the National Academy of Sciences. 1998;95(4):1472-1477. [CrossRef]

21. Friden P. Receptor mediated transport of peptides and proteins across the blood-brain barrier. In: Pardridg W, ed. The Blood-Brain Barrier. 1st ed.; 1993:229—247.

22. Gutteridge J. Iron and oxygen radicals in brain. Annals of Neurology. 1992;32(S1):S16-S21. [CrossRef]

23. Gelman B.B., Rodrigua-Wolf M.S., Wen J. Siderotic cerebral macrophages in the acquired immunodeficiency syndrom. Arch Pathol Lab Med. 1992 May; 116(5): 509-516. [PubMed]

24. Habgood M, Liu Z, Dehkordi L, Khodr H, Abbott J, Hider R. Investigation into the correlation between the structure of hydroxypyridinones and blood–brain barrier permeability. Biochemical Pharmacology. 1999;57(11):1305-1310. [CrossRef]

25. Halliwell B. Oxygen radicals as key mediators in neurological disease: Fact or fiction?. Annals of Neurology. 1992; 32(S1): 10-15. [CrossRef]

26. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry. 1958;3(1):41-51. [CrossRef]

27. Harris J, Grimaldi J, Awschalom D, Chiolero A, Loss D. Excess spin and the dynamics of antiferromagnetic ferritin. Physical Review B. 1999;60(5):3453-3456. [CrossRef]

28. Head J, Wang F, Elliott R. Antineoplastic drugs that interfere with iron metabolism in cancer cells. Advances in Enzyme Regulation. 1997; 37: 147-169. [CrossRef]

29. Hershko C, Graham G, Bates G, Rachmilewitz E. Non-Specific Serum Iron in Thalassaemia: an Abnormal Serum Iron Fraction of Potential Toxicity. British Journal of Haematology. 1978;40(2):255-263. [CrossRef]

30. Herrinton L.J., Friedman G.D., Baer D. та ін. Transferrin saturation and risk of cancer. Am J Epidemiol. 1995 Oct 1; 142(7): 692-698. [PubMed]

31. Hughes N. Serum transferrin and ceruloplasmin concentrations in patients with carcinoma, melanoma, sarcoma and cancers of haematopoietic tissues. Immunol Cell Biol. 1972; 50(1): 97-107. [CrossRef]

32. Hulet S, Hess E, Debinski W et al. Characterization and Distribution of Ferritin Binding Sites in the Adult Mouse Brain. Journal of Neurochemistry. 1999;72(2):868-874. [CrossRef]

33. Hulet S, Powers S, Connor J. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. Journal of the Neurological Sciences. 1999;165(1):48-55. [CrossRef]

34. Jacobs A. Low molecular weight iron transport compounds. Blood. 1977 Sep; 50(3): 433-439. [PubMed]

35. Jellinger K, Kienzl E. Iron deposits in brain disorders. In: Riederer P, Youdium M, ed. Iron In Central Nervous System Disorders. 1st ed. N.-Y., USA: Springer-Verlag; 1993:19-36.

36. Jellinger KA. Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren. In: Neuro-Psychopharmaka Ein Therapie-Handbuch: Parkinsonmittel und Antidementiva Gebundene. von Riederer P, Laux G, Pöldinger W, editors. Springer Vienna; 1999: 3–34.

37. Jordan I., Kaplan J. The mammalian transferrin independent iron transport system may involve a surface ferrireductase activity. Biochem J. 1994 Sep 15; 302(Pt 3): 875-879. [PubMed]

38. Kaneko Y, Kitamoto T, Tateishi J, Yamaguchi K. Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathologica. 1989; 79(2): 129-136. [CrossRef]

39. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliövaara M, Hakuunen T. Body iron stores and risk of cancer. International Journal of Cancer. 1994;56(3):379-382. [CrossRef]

40. Kozlov A. Intracellular free iron in liver tissue and liver homogenate: Studies with electron paramagnetic resonance on the formation of paramagnetic complexes with desferal and nitric oxide. Free Radical Biology and Medicine. 1992; 13(1): 9-16. [CrossRef]

41. Lalo UV, Pankratov YV, Mikhailik OM. Steady magnetic fields effect on lipid peroxidation kinetics. Redox report. 1994;1(1):71-75.

42. Link G, Saada A, Pinson A, Konijn A, Hershko C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. Journal of Laboratory and Clinical Medicine. 1998; 131(5): 466-474. [CrossRef]

43. Mann S, Wade V, Dickson D et al. Structural specificity of haemosiderin iron cores in iron-overload diseases. FEBS Letters. 1988;234(1):69-72. [CrossRef]

44. Martell L.A., Agrawal A., Ross D.A. et al. Efficiancy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumours. Cancer Res. 1993 Mar 15; 53(6): 1348-1353. [PubMed]

45. Mikhailik O, Razumov O, Dudchenko A. Use of ESR, Mossbauer spectroscopy and SQUID-magnetometry for the characterization of magnetic nanoparticles on the base of metal iron and its implications in vivo. In: Hafeli U, ed. Scientific And Clinical Applications Of Magnetic Carriers. N-Y: Plenum Press; 1997: 277-298.

46. Milman N. Iron status markers in hereditary haemochromatosis: Distinction between individuals being homozygous and heterozygous for the haemochromatosis allele. European Journal of Haematology. 1991;47(4):292-298. [CrossRef]

47. Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin J. Use of desferrioxamine in the treatment of aceruloplasminemia. Annals of Neurology. 1997;41(3):404-407. [CrossRef]

48. Mykhaylyk O, Dudchenko N. Nonheme iron determination in biological samples on evidence derived from electron spin resonance data. In: Collery Ph. et al, ed. Metal Ions In Biology And Medicine. 5th ed. Paris: John Libbey Eurotext; 1998: 3-7.

49. Mykhaylyk O, Cherchenko A, Dudchenko N., et al. Peculiarities of nonheme iron metabolism upon experimental modelling of rat glial brain tumour. Perspectives for diagnosis and treatment. In: Abstracts Of The 10Th International Symposium On Trace Elements In Man And Animals, TEMA10 (May, 2—7). Evian, France; 1999:141.

50. Mykhaylyk O, Dudchenko N, Orlova T, et al. Assesment of Nonheme Iron Status in the Whole Blood, Plasma and Serum: Healthy Neonates and Patients with Iron Overload. In: Abstracts of the 10th International Symposium on Trace Elements in Man and Animals, TEMA10 (May 2—7). Evian, France; 1999: 404.

51. Octave J, Schneider Y, Trouet A, Crichton R. Iron uptake and utilization by mammalian cells. I: Cellular uptake of transferrin and iron. Trends in Biochemical Sciences. 1983;8(6):217-220. [CrossRef]

52. Picard V. Role of Ferritin in the Control of the Labile Iron Pool in Murine Erythroleukemia Cells. Journal of Biological Chemistry. 1998;273(25):15382-15386. [CrossRef]

53. Lauffer R. Iron And Human Disease. Boca Raton: CRC Press; 1992.

54. Recht L, Torres C, Smith T, Raso V, Griffin T. Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy. Journal of Neurosurgery. 1990; 72(6): 941-945. [CrossRef]

55. Richardson D. R., Milnes K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: the mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy—1-naphthylaldehyde benzoyl hydrazone. Blood. 1997 Apr 15; 89(8): 3025-3038. [PubMed]

56. Seligman P.A., Schleicher R.B., Siriwardana G. та ін. Effects of agents that inhibit cellular iron incorporation on bladder cancer cell proliferation. Blood. 1993;82(5):1608-1617. [PubMed]

57.

Sofic E, Riederer P, Heinsen H et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. Journal of Neural Transmission. 1988; 74(3): 199-205. [CrossRef]

58. Spatz H. Über den eisennachweis im gehirn, besonders in zentren des extrapyramidal-motorischen systems. I. Teil. Zeitschrift für die gesamte Neurologie und Psychiatrie. 1922;77(1):261-390. [CrossRef]

59. Stevens R, Jones D, Micozzi M, Taylor P. Body Iron Stores and the Risk of Cancer. New England Journal of Medicine. 1988;319(16):1047-1052. [CrossRef]

60. Stevens I., Petersen D., Grodd W. et al. Superficial siderosis of the central nervous system. Eur Arch Psychiatry Clin Neurosci. 1991; 241(1): 57-60. [PubMed]

61. Ten Kate J, Wolthuis A, Westerhuis B, van Deursen C. The Iron Content of Serum Ferritin: Physiological Importance and Diagnostic Value. Clinical Chemistry and Laboratory Medicine. 1997;35(1). [CrossRef]

62. Tilbrook G.S., Hider R.C. Iron chelators for clinical use. Met Ions Biol Syst. 1998;35:691-730. [PubMed]

63. Torti S, Torti F, Whitman S, et al. Tumor Cell Cytotoxicity of a Novel Metal Chelator. Blood. 1998 Aug 15;92(4):1384-1389. [PubMed]

64. Waheed A, Parkkila S, Zhou X et al. Hereditary hemochromatosis: Effects of C282Y and H63D mutations on association with 2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proceedings of the National Academy of Sciences. 1997;94(23):12384-12389. [CrossRef]

65. Weinberg E. D. Iron withholding: a defence against infection and neoplasia. Physiol Rev. 1984 Jan; 64(1):65-102. [PubMed]

66. Youdim M.B.H., Ben-Shachar D. Minimal brain damage induced by early iron deficiency modified dopaminergic neurotransmission. Isr J Med Sci. 1987 Jan-Feb;23(1-2):19-25. [PubMed]

How to Cite

Zozulya, Y., Mykhaylyk, O., Rozumenko, V., Cherchenko, A., Dudchenko, N., Lebedev, E., & Shurunov, B. Peculiarities of nonheme iron metabolism in patients bearing glial brain tumours. Ukrainian Neurosurgical Journal, (2), 29–37. Retrieved from https://theunj.org/article/view/48408

Issue

Section

Original articles