Possibilities of biochemical biomarkers in prognosis of traumatic brain injury course


  • Vadym Biloshytsky Romodanov Neurosurgery Institute, Kiev, Ukraine
  • Oleg Kobyletsky Danylo Halytsky Lviv National Medical University, Lviv, Ukraine




traumatic brain injury, biomarkers


Limitations of available diagnostic and prognostic tools caused evaluation of potential biochemical biomarkers of traumatic brain injury (TBI). The “ideal” TBI biomarker should: 1) have highly sensitive and specific in TBI; 2) stratify the injured persons depending on TBI severity; 3) easily detected by a minimally invasive and inexpensive methods; 4) provide information about extent and mechanisms of brain damage; 5) reflect disease progression and treatment efficacy; 6) provide the ability to predict injury’s functional consequences. The main compounds that can be used as TBI biomarkers are calcium-binding protein S100B, ubiquitin carboxy hydrolase L1 (ubiquitin carboxy-terminal hydrolase-L1 — UCH-L1), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), αII-spectrin decomposition products (SBDP). Today there are no ideal biomarkers that meet most of these requirements. Some of them are lowly sensitive and low specific (NSE), or highly sensitive and lowly specific (S100B); GFAP is a highly specific marker of TBI with potential to predict consequences of severe injury, although it’s capabilities at mild or moderate TBI are not clear. Further more, GFAP level reflects mainly the presence and amount of focal lesions, where as other molecules better reflect the severity of diffuse brain injury (UCH-L1, SBDP). Combined use of biomarkers may have diagnostic and prognostic value at TBI in clinic. Properties of certain biomarkers can complement limitations or shortcomings of other biomarkers. Such combinations of biomarkers may include S100B, UCH-L1, GFAP, NSE, and SBDP.

Author Biographies

Vadym Biloshytsky, Romodanov Neurosurgery Institute, Kiev

Neurotrauma Department

Oleg Kobyletsky, Danylo Halytsky Lviv National Medical University, Lviv

Department of Neurology and Neurosurgery


Lekhan VМ, Huk AР. [Specifics of traumatic brain injury epidemiology in Ukraine]. Ukrayina. Zdorov'ya natsiyi. 2010;2:7–14. Ukrainian.

Chen X, Zhang K, Yang S, Dong J, Zhang J. Glucocorticoids Aggravate Retrograde Memory Deficiency Associated with Traumatic Brain Injury in Rats. Journal of Neurotrauma. 2009;26(2):253-260. CrossRef.

Langlois JA, Rutland-Brown W. Traumatic Brain Injury in the United States: The Future of Registries and Data Systems. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2005.

Fujimoto S, Longhi L, Saatman K, McIntosh T. Motor and cognitive function evaluation following experimental traumatic brain injury. Neuroscience & Biobehavioral Reviews. 2004;28(4):365-378. CrossRef.

Czeiter E, Mondello S, Kovacs N et al. Brain Injury Biomarkers May Improve the Predictive Power of the IMPACT Outcome Calculator. Journal of Neurotrauma. 2012;29(9):1770-1778. CrossRef.

Nelson D, Rudehill A, MacCallum R et al. Multivariate Outcome Prediction in Traumatic Brain Injury with Focus on Laboratory Values. Journal of Neurotrauma. 2012;29(17):2613-2624. CrossRef.

Lo T, Jones P, Minns R. Combining Coma Score and Serum Biomarker Levels To Predict Unfavorable Outcome following Childhood Brain Trauma. Journal of Neurotrauma. 2010;27(12):2139-2145. CrossRef.

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008;336(7641):425-429. CrossRef.

Steyerberg E, Mushkudiani N, Perel P et al. Predicting Outcome after Traumatic Brain Injury: Development and International Validation of Prognostic Scores Based on Admission Characteristics. Plos Med. 2008;5(8):e165. CrossRef.

Rowley G, Fielding K. Reliability and accuracy of the Glasgow Coma Scale with experienced and inexperienced users. The Lancet. 1991;337(8740):535-538. CrossRef.

Davis D, Serrano J, Vilke G et al. The Predictive Value of Field versus Arrival Glasgow Coma Scale Score and TRISS Calculations in Moderate-to-Severe Traumatic Brain Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2006;60(5):985-990. CrossRef.

Saatman K, Duhaime A, Bullock R, Maas A, Valadka A, Manley G. Classification of Traumatic Brain Injury for Targeted Therapies. Journal of Neurotrauma. 2008;25(7):719-738. CrossRef.

Mushkudiani N, Hukkelhoven C, Hernández A et al. A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. Journal of Clinical Epidemiology. 2008;61(4):331-343. CrossRef.

Marshall LF, Marshall SB, Klauber MR, Van Berkum Clark M, Eisenberg H, Jane JA, Luerssen TG, Marmarou A, Foulkes MA. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 1992;9:Suppl 1:S287-S292.

Maas A, Hukkelhoven C, Marshall L, Steyerberg E. Prediction of Outcome in Traumatic Brain Injury with Computed Tomographic Characteristics: A Comparison between the Computed Tomographic Classification and Combinations of Computed Tomographic Predictors. Neurosurgery. 2005;57(6):1173-1182. CrossRef.

McHugh G, Butcher I, Steyerberg E et al. Statistical Approaches to The Univariate Prognostic Analysis of The IMPACT Database on Traumatic Brain Injury. Journal of Neurotrauma. 2007;24(2):251-258. CrossRef.

Ingebrigtsen T, Romner B. Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restor Neurol Neurosci. 2003;21(3-4):171-6.

Dash P, Zhao J, Hergenroeder G, Moore A. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics. 2010;7(1):100-114. CrossRef.

Svetlov S, Larner S, Kirk D, Atkinson J, Hayes R, Wang K. Biomarkers of Blast-Induced Neurotrauma: Profiling Molecular and Cellular Mechanisms of Blast Brain Injury. Journal of Neurotrauma. 2009;26(6):913-921. CrossRef.

Marion D, Curley K, Schwab K, Hicks, and the mTBI Diagnostics Wor R. Proceedings of the Military mTBI Diagnostics Workshop, St. Pete Beach, August 2010. Journal of Neurotrauma. 2011;28(4):517-526. CrossRef.

Kobeissy F, Sadasivan S, Oli M et al. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Prot Clin Appl. 2008;2(10-11):1467-1483. CrossRef.

Feala JD, Abdulhameed MD, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(13):1101-1116. CrossRef.

Jeter C, Hergenroeder G, Hylin M, Redell J, Moore A, Dash P. Biomarkers for the Diagnosis and Prognosis of Mild Traumatic Brain Injury/Concussion. Journal of Neurotrauma. 2013;30(8):657-670. CrossRef.

Morrow DA, Cannon CP, Rifai N, Frey MJ, Vicari R, Lakkis N, Robertson DH, Hille DA, DeLucca PT, DiBattiste PM, Demopoulos LA, Weintraub WS, Braunwald E. Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: Results from a randomized trial. JAMA. 2001;286(19):2405-2412. CrossRef.

Kulasingam V, Diamandis E. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature Clinical Practice Oncology. 2008;5(10):588-599. CrossRef.

Sönmez Ü, Sönmez A, Erbil G, Tekmen I, Baykara B. Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neuroscience Letters. 2007;420(2):133-137. CrossRef.

Bramlett H, Dietrich W. Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. Journal of Cerebral Blood Flow & Metabolism. 2004:133-150. CrossRef.

Leker R, Shohami E. Cerebral ischemia and trauma—different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Research Reviews. 2002;39(1):55-73. CrossRef.

Agoston D, Gyorgy A, Eidelman O, Pollard H. Proteomic Biomarkers for Blast Neurotrauma: Targeting Cerebral Edema, Inflammation, and Neuronal Death Cascades. Journal of Neurotrauma. 2009;26(6):901-911. CrossRef.

Denslow N, Michel M, Temple M, Hsu C, Saatman K, Hayes R. Application of Proteomics Technology to the Field of Neurotrauma. Journal of Neurotrauma. 2003;20(5):401-407. CrossRef.

Vaagenes P. Effects of therapeutic hypothermia on activity of some enzymes in cerebrospinal fluid of patients with anoxic-ischemic brain injury. Clin Chem. 1986;32(7):1336-40.

Kochanek P, Berger R, Fink E et al. The Potential for Bio-Mediators and Biomarkers in Pediatric Traumatic Brain Injury and Neurocritical Care. Front Neurol. 2013;4. CrossRef.

Papa L, Ramia M, Kelly J, Burks S, Pawlowicz A, Berger R. Systematic Review of Clinical Research on Biomarkers for Pediatric Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(5):324-338. CrossRef.

Berger R. Identification of Inflicted Traumatic Brain Injury in Well-Appearing Infants Using Serum and Cerebrospinal Markers: A Possible Screening Tool. Pediatrics. 2006;117(2):325-332. CrossRef.

Jenny C, Hymel KP, Ritzen A, Reinert SE, Hay TC. Analysis of Missed Cases of Abusive Head Trauma. JAMA. 1999;281(7):621-626. CrossRef.

Noorbakhsh F, Overall C, Power C. Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends in Neurosciences. 2009;32(2):88-100. CrossRef.

Yao C, Williams A, Ottens A et al. Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Injury. 2008;22(10):723-732. CrossRef.

Yao C, Williams A, Ottens A et al. P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury. Journal of Neurotrauma. 2009;26(8):1295-1305. CrossRef.

Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60(6):540-551. CrossRef.

Rothermundt M, Peters M, Prehn J, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60(6):614-632. CrossRef.

Egea-Guerrero J, Murillo-Cabezas F, Gordillo-Escobar E et al. S100B Protein May Detect Brain Death Development after Severe Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(20):1762-1769. CrossRef.

Ondruschka B, Pohlers D, Sommer G et al. S100B and NSE as Useful Postmortem Biochemical Markers of Traumatic Brain Injury in Autopsy Cases. Journal of Neurotrauma. 2013;30(22):1862-1871. CrossRef.

Barger S, Van Eldik L, Mattson M. S100β protects hippocampal neurons from damage induced by glucose deprivation. Brain Research. 1995;677(1):167-170. CrossRef.

Chen Y, Swanson R. Astrocytes and Brain Injury. Journal of Cerebral Blood Flow & Metabolism. 2003:137-149. CrossRef.

Donato R, Heizmann C. S100B Protein in the Nervous System and Cardiovascular Apparatus in Normal and Pathological Conditions. Cardiovasc Psychiatry Neurol. 2010;2010:1-2. CrossRef.

Berger R, Pierce M, Wisniewski S et al. Neuron-Specific Enolase and S100B in Cerebrospinal Fluid After Severe Traumatic Brain Injury in Infants and Children. Pediatrics. 2002;109(2):e31-e31. CrossRef.

Sen J, Belli A. S100B in neuropathologic states: The CRP of the brain?. Journal of Neuroscience Research. 2007;85(7):1373-1380. CrossRef.

Michetti F, Gazzolo D. S100B protein in biological fluids: a tool for perinatal medicine. Clin Chem. 2002;48(12):2097-104.

Gonçalves C, Concli Leite M, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clinical Biochemistry. 2008;41(10-11):755-763. CrossRef.

Marchi N, Fazio V, Cucullo L, Kight K, Masaryk T, Barnett G, Vogelbaum M, Kinter M, Rasmussen P, Mayberg MR, Janigro D. Serum transthyretin monomer as a possible marker of blood-to-CSF barrier disruption. J Neurosci. 2003;23(5):1949-55.

Ghanem G, Loir B, Morandini R et al. On the release and half‐life of S100B protein in the peripheral blood of melanoma patients. International Journal of Cancer. 2001;94(4):586-590. CrossRef.

Goyal A, Failla MD, Niyonkuru C, Amin K, Fabio A, Berger RP, Wagner AK. S100b as a Prognostic Biomarker in Outcome Prediction for Patients with Severe Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(11):946-957. CrossRef.

Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, Svensson MA. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochirurgica. 2010;153(1):90-100. CrossRef.

Korfias S, Stranjalis G, Boviatsis E, Psachoulia C, Jullien G, Gregson B, Mendelow AD, Sakas DE. Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med. 2006;33(2):255-260. CrossRef.

Kövesdi E, Lückl J, Bukovics P, Farkas O, Pál J, Czeiter E, Szellár D, Dóczi T, Komoly S, Büki A. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochirurgica. 2009;152(1):1-17. CrossRef.

Thelin E, Johannesson L, Nelson D, Bellander B. S100B Is an Important Outcome Predictor in Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(7):519-528. CrossRef.

Bazarian JJ, Blyth BJ, He H, Mookerjee S, Jones C, Kiechle K, Moynihan R, Wojcik SM, Grant WD, Secreti LM, Triner W, Moscati R, Leinhart A, Ellis GL, Khan J. Classification Accuracy of Serum Apo A-I and S100B for the Diagnosis of Mild Traumatic Brain Injury and Prediction of Abnormal Initial Head Computed Tomography Scan. Journal of Neurotrauma. 2013;30(20):1747-1754. CrossRef.

Herrmann M, Jost S, Kutz S, Ebert AD, Kratz T, Wunderlich MT, Synowitz H. Temporal Profile of Release of Neurobiochemical Markers of Brain Damage After Traumatic Brain Injury Is Associated With Intracranial Pathology as Demonstrated in Cranial Computerized Tomography. Journal of Neurotrauma. 2000;17(2):113-122. CrossRef.

Raabe A, Grolms C, Keller M, Döhnert J, Sorge O, Seifert V. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir (Wien). 1998;140(8):787-92. CrossRef.

Biberthaler P, Linsenmeier U, Pfeifer KJ, Kroetz M, Mussack T, Kanz KG, Hoecherl EF, Jonas F, Marzi I, Leucht P, Jochum M, Mutschler W. Serum S-100B concentration provides additional information fot the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock. 2006;25(5):446-453. CrossRef.

Müller K, Townend W, Biasca N, Undén J, Waterloo K, Romner B, Ingebrigtsen T. S100B Serum Level Predicts Computed Tomography Findings After Minor Head Injury. The Journal of Trauma: Injury, Infection, and Critical Care. 2007;62(6):1452-1456. CrossRef.

Undén J, Romner B. A new objective method for CT triage after minor head injury - serum S100B. Scandinavian Journal of Clinical & Laboratory Investigation. 2009;69(1):13-17. CrossRef.

Pelinka LE, Szalay L, Jafarmadar M, Schmidhammer R, Redl H, Bahrami S. Circulating S100B is increased after bilateral femur fracture without brain injury in the rat. British Journal of Anaesthesia. 2003;91(4):595-597. CrossRef.

Anderson R, Hansson L, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for patients without head injuries. Neurosurgery. 2001;48(6):1255-1260. CrossRef.

Bazarian J, Zemlan F, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Injury. 2006;20(7):759-765. CrossRef.

Nygren De Boussard C, Fredman P, Lundin A, Andersson K, Edman G, Borg J. S100 in mild traumatic brain injury. Brain Injury. 2004;18(7):671-683. CrossRef.

Hasselblatt M, Mooren FC, von Ahsen N, Keyvani K, Fromme A, Schwarze-Eicker K, Senner V, Paulus W. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology. 2004;62(9):1634-6. CrossRef.

Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, Sorani MD, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Manley GT. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. Journal of Neurotrauma. 2013;30(17):1490-1497. CrossRef.

Galea E, Dupouey P, Feinstein D. Glial fibrillary acidic protein mRNA isotypes: Expression in vitro and in vivo. Journal of Neuroscience Research. 1995;41(4):452-461. CrossRef.

Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, Fujita M, Izumi T, Maekawa T. Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. The Journal of Trauma: Injury, Infection, and Critical Care. 2010;69(1):104-9. CrossRef.

Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A. Glial Fibrillary Acidic Protein in Serum After Traumatic Brain Injury and Multiple Trauma. The Journal of Trauma: Injury, Infection, and Critical Care. 2004;57(5):1006-1012. CrossRef.

Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Annals of Emergency Medicine. 2012;59(6):471-483. CrossRef.

Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annual Review of Neuroscience. 1987;10(1):269-295. CrossRef.

Johnsson P, Blomquist S, Lührs C, Malmkvist G, Alling C, Solem JO, Ståhl E. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. The Annals of Thoracic Surgery. 2000;69(3):750-754. CrossRef.

Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K. Immunohistochemical localization of gamma-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest. 1985 Mar;52(3):257-63.

Murray G, Duncan M, Melvin W, Fothergill J. Immunohistochemistry of neurone specific enolase with gamma subunit specific anti-peptide monoclonal antibodies. Journal of Clinical Pathology. 1993;46(11):993-996. CrossRef.

Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S. Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock. 2005;24(2):119-123. CrossRef.

Johnsson P. Markers of cerebral ischemia after cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia. 1996;10(1):120-126. CrossRef.

Steinberg R, Scarna H, Keller A, Pujol J. Release of neuron specific enolase (NSE) in cerebrospinal fluid following experimental lesions of the rat brain. Neurochemistry International. 1983;5(1):145-151. CrossRef.

Ogata M, Tsuganezawa O. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. International Journal of Legal Medicine. 1999;113(1):19-25. CrossRef.

Bandyopadhyay S. Serum Neuron-specific Enolase as a Predictor of Short-term Outcome in Children with Closed Traumatic Brain Injury. Academic Emergency Medicine. 2005;12(8):732-738. CrossRef.

Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62(8):1303-1310. CrossRef.

Berger R, Adelson P, Pierce M, Dulani T, Cassidy L, Kochanek P. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. Journal of Neurosurgery: Pediatrics. 2005;103(1):61-68. CrossRef.

Berger R, Beers S, Richichi R, Wiesman D, Adelson P. Serum Biomarker Concentrations and Outcome after Pediatric Traumatic Brain Injury. Journal of Neurotrauma. 2007;24(12):1793-1801. CrossRef.

Jackson P, Thompson R. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. Journal of the Neurological Sciences. 1981;49(3):429-438. CrossRef.

Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochemistry International. 2007;51(2-4):105-111. CrossRef.

Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an Interaction between Ubiquitin-Conjugating Enzymes and the 26S Proteasome. Molecular and Cellular Biology. 2000;20(13):4691-4698. CrossRef.

Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KK. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. European Journal of Neuroscience. 2010;31(4):722-732. CrossRef.

Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Critical Care Medicine. 2010;38(1):138-144. CrossRef.

Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KK. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 2012;72(5):1335-44. CrossRef.

Zoltewicz JS, Mondello S, Yang B, Newsom KJ, Kobeissy F, Yao C, Lu XC, Dave JR, Shear DA, Schmid K, Rivera V, Cram T, Seaney J, Zhang Z, Wang KK, Hayes RL, Tortella FC. Biomarkers Track Damage after Graded Injury Severity in a Rat Model of Penetrating Brain Injury. Journal of Neurotrauma. 2013;30(13):1161-1169. CrossRef.

Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella F, Wang KK, Hayes RL. Glial Neuronal Ratio: A Novel Index for Differentiating Injury Type in Patients with Severe Traumatic Brain Injury. Journal of Neurotrauma. 2012;29(6):1096-1104. CrossRef.

Kochanek P, Berger R, Bayr H, Wagner A, Jenkins L, Clark R. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Current Opinion in Critical Care. 2008;14(2):135-141. CrossRef.

D'Aversa T, Eugenin E, Lopez L, Berman J. Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathology and Applied Neurobiology. 2013;39(3):270-283. CrossRef.

Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS. Simultaneous Degradation of В II- and В II-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells. Journal of Biological Chemistry. 1998;273(35):22490-22497. CrossRef.

Newcomb-Fernandez JK, Zhao X, Pike BR, Wang KK, Kampfl A, Beer R, DeFord SM, Hayes RL. Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. Journal of Cerebral Blood Flow & Metabolism. 2001:1281-1294. CrossRef.

Pike BR, Zhao X, Newcomb JK, Wang KK, Posmantur RM, Hayes RL. Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. Journal of Neuroscience Research. 1998;52(5):505-520. CrossRef.

Berger R, Hayes R, Richichi R, Beers S, Wang K. Serum concentrations of ubiquitin C terminal hydrolase-L1 and alphaII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. Journal of Neurotrauma. 2012;29(1):162-167. CrossRef.

Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, Newcomb JK, Zhao X, Schmutzhard E, Poewe W, Kampfl A. Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. Journal of Neurochemistry. 2000;75(3):1264-1273. CrossRef.

Pike B, Flint J, Dutta S, Johnson E, Wang K, Hayes R. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. Journal of Neurochemistry. 2001;78(6):1297-1306. CrossRef.

Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM, Tepas JJ, Wang KK, Robertson CS, Hayes RL. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. Journal of Neurotrauma. 2007;24(2):354-366. CrossRef.

Ringger NC, O'Steen BE, Brabham JG, Silver X, Pineda J, Wang KK, Hayes RL, Papa L. A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. Journal of Neurotrauma. 2004;21(10):1443-1456. CrossRef.

Gabbita S, Scheff S, Menard R, Roberts K, Fugaccia I, Zemlan F. Cleaved-Tau: A Biomarker of Neuronal Damage after Traumatic Brain Injury. Journal of Neurotrauma. 2005;22(1):83-94. CrossRef.

Walder B, Robin X, Rebetez MM, Copin JC, Gasche Y, Sanchez JC, Turck N. The Prognostic Significance of the Serum Biomarker Heart-Fatty Acidic Binding Protein in Comparison with S100b in Severe Traumatic Brain Injury. Journal of Neurotrauma. 2013;30(19):1631-1637. CrossRef.

Muehlschlegel JD, Perry TE, Liu KY, Fox AA, Collard CD, Shernan SK, Body SC. Heart-Type Fatty Acid Binding Protein Is an Independent Predictor of Death and Ventricular Dysfunction After Coronary Artery Bypass Graft Surgery. Anesthesia & Analgesia. 2010;111(5):1101-1109. CrossRef.

Stein DM, Lindell AL, Murdock KR, Kufera JA, Menaker J, Bochicchio GV, Aarabi B, Scalea TM. Use of Serum Biomarkers to Predict Cerebral Hypoxia after Severe Traumatic Brain Injury. Journal of Neurotrauma. 2012;29(6):1140-1149. CrossRef.

Hergenroeder G, Redell JB, Moore AN, Dubinsky WP, Funk RT, Crommett J, Clifton GL, Levine R, Valadka A, Dash PK. Identification of Serum Biomarkers in Brain-Injured Adults: Potential for Predicting Elevated Intracranial Pressure. Journal of Neurotrauma. 2008;25(2):79-93. CrossRef.

Stocchetti N, Colombo A, Ortolano F, Videtta W, Marchesi R, Longhi L, Zanier ER. Time Course of Intracranial Hypertension after Traumatic Brain Injury. Journal of Neurotrauma. 2007;24(8):1339-1346. CrossRef.

Tate CM, Wang KK, Eonta S, Zhang Y, Carr W, Tortella FC, Hayes RL, Kamimori GH. Serum Brain Biomarker Level, Neurocognitive Performance, and Self-Reported Symptom Changes in Soldiers Repeatedly Exposed to Low-Level Blast: A Breacher Pilot Study. Journal of Neurotrauma. 2013;30(19):1620-1630. CrossRef.



How to Cite

Biloshytsky, V., & Kobyletsky, O. (2015). Possibilities of biochemical biomarkers in prognosis of traumatic brain injury course. Ukrainian Neurosurgical Journal, (1), 4–15. https://doi.org/10.25305/unj.40970



Review articles