Platelet-rich plasma in discogenic pain: therapeutic potential of multifactorial action
DOI:
https://doi.org/10.25305/unj.333217Keywords:
intervertebral disc, degeneration, platelet-rich plasma, growth factors, NF-κB, signaling pathways, regenerationAbstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of chronic low back pain and disability. The key pathogenetic mechanism of IVDD is chronic inflammation, which leads to extracellular matrix catabolism and the death of disc cells. It has been established that these changes are based on the activation of pro-inflammatory signaling cascades, particularly NF-κB, MAPK, and JAK/STAT pathways, as well as the induction of caspase-dependent apoptosis.
Objective: To summarize current understanding of the molecular signaling pathways involved in degenerative processes within the intervertebral disc, and to elucidate the mechanisms of action of platelet-rich plasma (PRP) components capable of modulating these pathways.
Materials and methods: A comprehensive analysis of contemporary experimental and clinical studies was performed to evaluate the effects of the main growth factors present in PRP (TGF-β, PDGF, IGF-1, FGF, CTGF, EGF, HGF) on signaling pathways in intervertebral disc cells associated with catabolism, apoptosis, and inflammation.
Results: PRP-derived factors exert their effects through activation of the Smad, PI3K/AKT, MAPK, and JAK/STAT pathways while attenuating NF-κB activity, leading to decreased levels of pro-inflammatory cytokines (IL-1β, TNF-α) and metalloproteinases (MMPs, ADAMTS). These effects are accompanied by enhanced expression of type II collagen and aggrecan, stabilization of the extracellular matrix, restoration of tissue homeostasis and increased cell proliferation.
Conclusions: PRP therapy demonstrates considerable potential as a pathogenetically oriented regenerative strategy for the treatment of IVDD. Its efficacy arises from a multimodal influence on inflammatory, catabolic, and apoptotic pathways. Further clinical research is warranted to standardize treatment protocols and confirm the long-term therapeutic effectiveness of PRP.
References
1. Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J. 2025 Jan 13:S1529-9430(25)00008-7. [CrossRef] [PubMed]
2. Mohd Isa IL, Teoh SL, Mohd Nor NH, Mokhtar SA. Discogenic Low Back Pain: Anatomy, Pathophysiology and Treatments of Intervertebral Disc Degeneration. Int J Mol Sci. 2022 Dec 22;24(1):208. [CrossRef] [PubMed] [PubMed Central]
3. Zhang GZ, Deng YJ, Xie QQ, et al. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta. 2020;508:33–42. [CrossRef] [PubMed]
4. Peng BG. Fundamentals of intervertebral disc degeneration and related discogenic pain. World J Orthop. 2025 Jan 18;16(1):102119. [CrossRef] [PubMed] [PubMed Central]
5. Pratsinis H, Kletsas D. PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. Eur Spine J. 2007 Nov;16(11):1858-66. [CrossRef] [PubMed] [PubMed Central]
6. Tolonen J, Grönblad M, Vanharanta H, et al. Growth factor expression in degenerated intervertebral disc tissue. Eur Spine J. 2006 May;15(5):588-96. [CrossRef] [PubMed] [PubMed Central]
7. Sono T, Shima K, Shimizu T, et al. Regenerative therapies for lumbar degenerative disc diseases: a literature review. Front Bioeng Biotechnol. 2024 Aug 26;12:1417600. [CrossRef] [PubMed] [PubMed Central]
8. Liang H, Luo R, Li G, et al. The Proteolysis of ECM in Intervertebral Disc Degeneration. Int J Mol Sci. 2022 Feb 2;23(3):1715. [CrossRef] [PubMed] [PubMed Central]
9. Zhang GZ, Liu MQ, Chen HW, et al. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2021 Jul;54(7):e13057. [CrossRef] [PubMed] [PubMed Central]
10. Wang Y, Cheng H, Wang T, et al. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023 Sep;56(9):e13448. [CrossRef] [PubMed] [PubMed Central]
11. Wu J, Chen Y, Liao Z, et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells. Mol Ther. 2022 Oct 5;30(10):3241-3256. [CrossRef] [PubMed] [PubMed Central]
12. Li H, Pan H, Xiao C, et al. IL-1β-mediated inflammatory responses in intervertebral disc degeneration: Mechanisms and therapeutic potential. Heliyon. 2023 Sep 7;9(9):e19951. [CrossRef] [PubMed] [PubMed Central]
13. Huang Y, Wang Y, Wu C, Tian W. Elevated expression of hypoxia-inducible factor-2alpha regulated catabolic factors during intervertebral disc degeneration. Life Sci. 2019 Sep 1;232:116565. [CrossRef] [PubMed]
14. Li Y, Chen L, Gao Y, et al. Oxidative Stress and Intervertebral Disc Degeneration: Pathophysiology, Signaling Pathway, and Therapy. Oxid Med Cell Longev. 2022 Oct 10;2022:1984742. [CrossRef] [PubMed] [PubMed Central]
15. Tao C, Lin S, Shi Y, et al. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine. 2024 Oct 8;7(4):e70006. [CrossRef] [PubMed] [PubMed Central]
16. Li W, Tu J, Zheng J, et al. Gut Microbiome and Metabolome Changes in Chronic Low Back Pain Patients With Vertebral Bone Marrow Lesions. JOR Spine. 2025 Jan 27;8(1):e70042. [CrossRef] [PubMed] [PubMed Central]
17. Zhao J, He S, Minassian A, et al. Recent advances on viral manipulation of NF-κB signaling pathway. Curr Opin Virol. 2015 Dec;15:103-11. [CrossRef] [PubMed] [PubMed Central]
18. Walker BF, Armson AJ, O'Dea MA, et al. Are viruses associated with disc herniation? A clinical case series. BMC Musculoskelet Disord. 2020 Jan 14;21(1):27. [CrossRef] [PubMed] [PubMed Central]
19. Granville Smith I, Danckert NP, Freidin MB, et al. Evidence for infection in intervertebral disc degeneration: a systematic review. Eur Spine J. 2022 Feb;31(2):414-430. [CrossRef] [PubMed] [PubMed Central]
20. Mai Y, Wu S, Zhang P, et al. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater. 2024 Nov 9;45:19-40. [CrossRef] [PubMed] [PubMed Central]
21. Wang Y, Hu Y, Wang H, et al. Deficiency of MIF accentuates overloaded compression-induced nucleus pulposus cell oxidative damage via depressing mitophagy. Oxid Med Cell Longev. 2021 Jul 1;2021:6192498. [CrossRef] [PubMed] [PubMed Central]
22. Wang J, Jiang Y, Zhu C, et al. Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design. Bioact Mater. 2024 May 31;40:1-18. [CrossRef] [PubMed] [PubMed Central]
23. Elmounedi N, Bahloul W, Kharrat A, et al. Ozone therapy (O2-O3) alleviates the progression of early intervertebral disc degeneration via the inhibition of oxidative stress and the interception of the PI3K/Akt/NF-κB signaling pathway. Int Immunopharmacol. 2024 Mar 10;129:111596. [CrossRef] [PubMed]
24. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 2010;345:105-20. [CrossRef] [PubMed] [PubMed Central]
25. Peng F, Sun M, Jing X, et al. Piezo1 promotes intervertebral disc degeneration through the Ca2+/F-actin/Yap signaling axis. Mol Med. 2025;31:90. [CrossRef]
26. Krzyzanowska AK, Frawley RJ, Damle S, et al. Activation of nuclear factor-kappa B by TNF promotes nucleus pulposus mineralization through inhibition of ANKH and ENPP1. Sci Rep. 2021;11:8271. [CrossRef]
27. Zheng SK, Zhao XK, Wu H, et al. Oxidative stress-induced EGR1 upregulation promotes NR4A3-mediated nucleus pulposus cells apoptosis in intervertebral disc degeneration. Aging (Albany NY). 2024 Jun 28;16(12):10216-10238. [CrossRef] [PubMed] [PubMed Central]
28. Liu G, Gao L, Wang Y, et al. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol. 2024 Sep 19;12:1423665. [CrossRef] [PubMed] [PubMed Central]
29. Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med. 2024 Apr 25;27(6):265. [CrossRef] [PubMed] [PubMed Central]
30. Lin J, Gu J, Fan D, Li W. Herbal formula modified Bu-Shen-Huo-Xue decoction attenuates intervertebral disc degeneration via regulating inflammation and oxidative stress. Evid Based Complement Alternat Med. 2022 Feb 2;2022:4284893. [CrossRef] [PubMed] [PubMed Central]
31. Zhou Z, Wang Y, Liu H, et al. PBN protects NP cells from AAPH-induced degenerative changes by inhibiting the ERK1/2 pathway. Connect Tissue Res. 2021 Jul;62(4):359-368. [CrossRef] [PubMed]
32. Cambria E, Heusser S, Scheuren AC, et al. TRPV4 mediates cell damage induced by hyperphysiological compression and regulates COX2/PGE2 in intervertebral discs. JOR Spine. 2021 May 6;4(3):e1149. [CrossRef] [PubMed] [PubMed Central]
33. Zhu F, Duan W, Zhong C, et al. The protective effects of dezocine on interleukin-1β-induced inflammation, oxidative stress and apoptosis of human nucleus pulposus cells and the possible mechanisms. Bioengineered. 2022 Jan;13(1):1399-1410. [CrossRef] [PubMed] [PubMed Central]
34. Peng Y, Lin H, Tian S, et al. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med. 2021 Dec;177:247-259. [CrossRef] [PubMed]
35. Pei S, Ying J, Zhang Y, et al. RhTSG-6 inhibits IL-1β-induced extracellular matrix degradation and apoptosis by suppressing the p38, and JNK pathways in nucleus pulposus cells. Folia Histochem Cytobiol. 2020;58(3):227-234. [CrossRef] [PubMed]
36. Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation. 2020 Jun;43(3):796-809. [CrossRef] [PubMed]
37. Cui H, Du X, Liu C, et al. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte. 2021 Dec;10(1):201-215. [CrossRef] [PubMed] [PubMed Central]
38. Staszkiewicz R, Gładysz D, Sobański D, et al. Assessment of the concentration of transforming growth factor beta 1-3 in degenerated intervertebral discs of the lumbosacral region of the spine. Curr Issues Mol Biol. 2024 Nov 11;46(11):12813-12829. [CrossRef] [PubMed] [PubMed Central]
39. Taylor W, Erwin WM. Intervertebral disc degeneration and regeneration: new molecular mechanisms and therapeutics: obstacles and potential breakthrough technologies. Cells. 2024 Dec 19;13(24):2103. [CrossRef] [PubMed] [PubMed Central]
40. Wang H, Zhu J, Xia Y, et al. Application of platelet-rich plasma in spinal surgery. Front Endocrinol (Lausanne). 2023 Mar 15;14:1138255. [CrossRef] [PubMed] [PubMed Central]
41. Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024 Mar 22;9(1):61. [CrossRef] [PubMed] [PubMed Central]
42. Giarratana AO, Prendergast CM, Salvatore MM, et al. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med. 2024 Jun 26;22(1):594. [CrossRef] [PubMed] [PubMed Central]
43. Tseranidou S, Segarra-Queralt M, Chemorion FK, et al. Nucleus pulposus cell network modelling in the intervertebral disc. NPJ Syst Biol Appl. 2025 Jan 31;11(1):13. [CrossRef] [PubMed] [PubMed Central]
44. Shnayder NA, Ashkhotov AV, Trefilova VV, et al. Molecular basic of pharmacotherapy of cytokine imbalance as a component of intervertebral disc degeneration treatment. Int J Mol Sci. 2023 Apr 22;24(9):7692. [CrossRef] [PubMed] [PubMed Central]
45. Andia I, Atilano L, Maffulli N. Moving toward targeting the right phenotype with the right platelet-rich plasma (PRP) formulation for knee osteoarthritis. Ther Adv Musculoskelet Dis. 2021 Mar 29;13:1759720X211004336. [CrossRef] [PubMed] [PubMed Central]
46. Rayrikar AY, Wagh GA, Santra MK, et al. Ccn2a-FGFR1-SHH signaling is necessary for intervertebral disc homeostasis and regeneration in adult zebrafish. Development. 2023 Jan 1;150(1):dev201036. [CrossRef] [PubMed] [PubMed Central]
47. Uebelhoer M, Lambert C, Grisart J, et al. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: a scoping review. Front Med (Lausanne). 2023 Apr 3;10:1148623. [CrossRef] [PubMed] [PubMed Central]
48. Lu S, Lin C. Lentivirus mediated transfer of gene encoding fibroblast growth factor 18 inhibits intervertebral disc degeneration. Exp Ther Med. 2021;22:856. [CrossRef]
49. Kikuchi N, Yoshioka T, Arai N, et al. A retrospective analysis of clinical outcome and predictive factors for responders with knee osteoarthritis to a single injection of leukocyte-poor platelet-rich plasma. J Clin Med. 2021 Oct 31;10(21):5121. [CrossRef] [PubMed] [PubMed Central]
50. Amable PR, Carias RB, Teixeira MV, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013 Jun 7;4(3):67. [CrossRef] [PubMed] [PubMed Central]
51. Beitia M, Delgado D, Mercader J, et al. Action of platelet-rich plasma on in vitro cellular bioactivity: more than platelets. Int J Mol Sci. 2023 Mar 10;24(6):5367. [CrossRef] [PubMed] [PubMed Central]
52. Ren M, Yao S, Chen T, et al. Connective tissue growth factor: regulation, diseases, and drug discovery. Int J Mol Sci. 2024 Apr 25;25(9):4692. [CrossRef] [PubMed] [PubMed Central]
53. Istvánffy R, Vilne B, Schreck C, et al. Stroma-derived connective tissue growth factor maintains cell cycle progression and repopulation activity of hematopoietic stem cells in vitro. Stem Cell Reports. 2015 Nov 10;5(5):702-715. [CrossRef] [PubMed] [PubMed Central]
54. Yang H, Chen X, Chen J, et al. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol. 2024 Dec 2;12:1492870. [CrossRef]
55. Fu M, Peng D, Lan T, et al. Multifunctional regulatory protein connective tissue growth factor (CTGF): a potential therapeutic target for diverse diseases. Acta Pharm Sin B. 2022 Apr;12(4):1740-1760. [CrossRef] [PubMed] [PubMed Central]
56. Yang Z, Li W, Song C, Leng H. CTGF as a multifunctional molecule for cartilage and a potential drug for osteoarthritis. Front Endocrinol (Lausanne). 2022 Oct 17;13:1040526. [CrossRef]
57. Havis E, Duprez D. EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int J Mol Sci. 2020 Feb 28;21(5):1664. [CrossRef] [PubMed] [PubMed Central]
58. Lu L, Xu A, Gao F, et al. Mesenchymal stem cell-derived exosomes as a novel strategy for the treatment of intervertebral disc degeneration. Front Cell Dev Biol. 2022 Jan 24;9:770510. [CrossRef] [PubMed] [PubMed Central]
59. Cavallo C, Filardo G, Mariani E, et al. Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Joint Surg Am. 2014 Mar 5;96(5):423-9. [CrossRef] [PubMed]
60. Itsuji T, Tonomura H, Ishibashi H, et al. Hepatocyte growth factor regulates HIF-1α-induced nucleus pulposus cell proliferation through MAPK-, PI3K/Akt-, and STAT3-mediated signaling. J Orthop Res. 2021 Jun;39(6):1184-1191. [CrossRef] [PubMed]
61. Tratnig-Frankl M, Luft N, Magistro G, et al. Hepatocyte growth factor modulates corneal endothelial wound healing in vitro. Int J Mol Sci. 2024 Aug 29;25(17):9382. [CrossRef] [PubMed] [PubMed Central]
62. Yang F, Deng L, Li J, et al. Emodin retarded renal fibrosis through regulating HGF and TGFβ-Smad signaling pathway. Drug Des Devel Ther. 2020 Sep 3;14:3567-3575. [CrossRef] [PubMed] [PubMed Central]
63. Everts PA, Lana JF, Alexander RW, et al. Profound properties of protein-rich, platelet-rich plasma matrices as novel, multi-purpose biological platforms in tissue repair, regeneration, and wound healing. Int J Mol Sci. 2024 Jul 19;25(14):7914. [CrossRef] [PubMed] [PubMed Central]
64. Kataria S, Wijaya JH, Patel U, et al. The role of platelet rich plasma in vertebrogenic and discogenic pain: a systematic review and meta-analysis. Curr Pain Headache Rep. 2024 Aug;28(8):825-833. [CrossRef] [PubMed] [PubMed Central]
65. Kawabata S, Hachiya K, Nagai S, et al. Autologous platelet-rich plasma administration on the intervertebral disc in low back pain patients with Modic type 1 change: report of two cases. Medicina (Kaunas). 2023 Jan 5;59(1):112. [CrossRef] [PubMed] [PubMed Central]
66. Chang Y, Yang M, Yu S, Zhan K. Effect of platelet-rich plasma on intervertebral disc degeneration in vivo and in vitro: a critical review. Oxid Med Cell Longev. 2020;2020:8893819. [CrossRef] [PubMed] [PubMed Central]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Михайло В. Хижняк

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.






