Changes in the neuro-glial-vascular interface in metabolic intoxications in children (based on acetonemic syndrome and hyperammonemia)
DOI:
https://doi.org/10.25305/unj.331349Keywords:
neuro-glial-vascular interface, acetonemic syndrome; hyperammonemia, blood-brain barrie, astrocytes, excitotoxicity, neuroinflammation, childrenAbstract
Objective: To investigate morphofunctional changes of the neuro-glial-vascular interface in children with metabolic intoxications, particularly in acetonemic syndrome and hyperammonemia.
Materials and methods: A systematic literature review with elements of narrative analysis was conducted following PRISMA guidelines. Literature search was performed in PubMed/MEDLINE, Web of Science Core Collection, Scopus, and Cochrane Library for the period 1990-2024. Included studies involved children from birth to 18 years and investigated neurotoxic effects of acetonemic syndrome and hyperammonemia. Study quality was assessed using Newcastle-Ottawa Scale, AMSTAR-2, and SYRCLE tools.
Results: Key morphofunctional disorders of the neuro-glial-vascular interface were identified: cytotoxic astrocytic swelling due to glutamine accumulation during ammonia detoxification; blood-brain barrier disruption with decreased expression of tight junction proteins (claudin-5, occludin, ZO-1); impaired energy metabolism due to glycolysis inhibition and mitochondrial dysfunction; excitotoxicity resulting from glutamate-glutamine cycle disruption; microglial activation with increased expression of CD68, Iba1, MHC II, and pro-inflammatory cytokine secretion.
Conclusions: Morphofunctional changes of the neuro-glial-vascular interface with acetonemic syndrome and hyperammonemia are characterized by complex disruptions of blood-brain barrier (BBB) structure and function, energy metabolism, neurotransmitter balance, and neuroinflammatory processes. A personalized approach to diagnosis and treatment using biomarkers of BBB damage and neuroinflammation is necessary.
References
1. Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Rev. 2007 Nov;56(1):183-97. [CrossRef][PubMed]
2. Rojas CR, Chapman J, Regier D. Hyperammonemia in the Pediatric Emergency Department. Pediatr Emerg Care. 2024 Feb 1;40(2):156-161. [CrossRef][PubMed]
3. Khilchevska VS. Clinical and anamnestic features of acetonemic syndrome in children with patholigy of the digestive system. Journal of Education, Health and Sport. 2018 Aug 14;8(8):701-5. https://apcz.umk.pl/JEHS/article/view/5812
4. Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 2007;30:235-58. [CrossRef][PubMed] [PubMed Central]
5. Butterworth RF. Glutamate transporter and receptor function in disorders of ammonia metabolism. Ment Retard Dev Disabil Res Rev. 2001;7(4):276-9. [CrossRef][PubMed]
6. Hawkins RA, Viña JR. How Glutamate Is Managed by the Blood-Brain Barrier. Biology (Basel). 2016 Oct 8;5(4):37. [CrossRef][PubMed] [PubMed Central]
7. Lochhead JJ, Williams EI, Reddell ES, Dorn E, Ronaldson PT, Davis TP. High Resolution Multiplex Confocal Imaging of the Neurovascular Unit in Health and Experimental Ischemic Stroke. Cells. 2023 Feb 17;12(4):645. [CrossRef][PubMed] [PubMed Central]
8. Smith BC, Tinkey RA, Shaw BC, Williams JL. Targetability of the neurovascular unit in inflammatory diseases of the central nervous system. Immunol Rev. 2022 Oct;311(1):39-49. [CrossRef][PubMed] [PubMed Central]
9. Cooper AJ. Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev. 2001;7(4):280-6. [CrossRef][PubMed]
10. Parekh PJ, Balart LA. Ammonia and Its Role in the Pathogenesis of Hepatic Encephalopathy. Clin Liver Dis. 2015 Aug;19(3):529-37. [CrossRef][PubMed]
11. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans. Am J Physiol. 1995 Jun;268(6 Pt 1):E1161-6. [CrossRef][PubMed]
12. Zhang J, Zhang M, Sun B, Li Y, Xu P, Liu C, Liu L, Liu X. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-κB. J Neurochem. 2014 Dec;131(6):791-802. [CrossRef][PubMed]
13. Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis. 2010 Mar;25(1):31-8. [CrossRef][PubMed]
14. Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA, Nedergaard M. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med. 2013 Dec;19(12):1643-8. [CrossRef][PubMed] [PubMed Central]
15. Patching SG. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol. 2017 Mar;54(2):1046-1077. [CrossRef][PubMed]
16. Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012 Jan 4;87(1):10-20. [CrossRef][PubMed] [PubMed Central]
17. Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci. 2022 Dec 2;14:1054605. [CrossRef][PubMed] [PubMed Central]
18. Doney E, Cadoret A, Dion-Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci. 2022 May;55(9-10):2851-2894. [CrossRef][PubMed] [PubMed Central]
19. Keep RF, Ennis SR, Beer ME, Betz AL. Developmental changes in blood-brain barrier potassium permeability in the rat: relation to brain growth. J Physiol. 1995 Oct 15;488 ( Pt 2)(Pt 2):439-48. [CrossRef][PubMed] [PubMed Central]
20. Baker PR 2nd. Recognizing and Managing a Metabolic Crisis. Pediatr Clin North Am. 2023 Oct;70(5):979-993. [CrossRef][PubMed]
21. Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res. 2024 Jan;95(1):59-69. [CrossRef][PubMed] [PubMed Central]
22. Sugiyama Y, Murayama K. Acute Encephalopathy Caused by Inherited Metabolic Diseases. J Clin Med. 2023 May 31;12(11):3797. [CrossRef][PubMed] [PubMed Central]
23. McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int. 2019 Sep;128:70-84. [CrossRef][PubMed] [PubMed Central]
24. Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int J Mol Sci. 2021 Apr 20;22(8):4280. [CrossRef][PubMed] [PubMed Central]
25. Gowrikumar S, Tarudji A, McDonald BZ, Balusa SS, Kievit FM, Dhawan P. Claudin-1 impairs blood-brain barrier by downregulating endothelial junctional proteins in traumatic brain injury. Tissue Barriers. 2025 Feb 28:2470482. [CrossRef][PubMed]
26. Liu G, Wang Q, Tian L, Wang M, Duo D, Duan Y, Lin Y, Han J, Jia Q, Zhu J, Li X. Blood-Brain Barrier Permeability is Affected by Changes in Tight Junction Protein Expression at High-Altitude Hypoxic Conditions-this may have Implications for Brain Drug Transport. AAPS J. 2024 Aug 6;26(5):90. [CrossRef][PubMed]
27. Zou P, Yang F, Ding Y, Zhang D, Liu Y, Zhang J, Wu D, Wang Y. Lipopolysaccharide downregulates the expression of ZO-1 protein through the Akt pathway. BMC Infect Dis. 2022 Oct 5;22(1):774. [CrossRef][PubMed] [PubMed Central]
28. Hong F, Mu X, Ze Y, Li W, Zhou Y, Ji J. Damage to the Blood Brain Barrier Structure and Function from Nano Titanium Dioxide Exposure Involves the Destruction of Key Tight Junction Proteins in the Mouse Brain. J Biomed Nanotechnol. 2021 Jun 1;17(6):1068-1078. [CrossRef][PubMed]
29. Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011 Jun;44(2):130-9. [CrossRef][PubMed]
30. Alluri H, Peddaboina CS, Tharakan B. Determination of Tight Junction Integrity in Brain Endothelial Cells Based on Tight Junction Protein Expression. Methods Mol Biol. 2024;2711:235-240. [CrossRef][PubMed] [PubMed Central]
31. Wen J, Qian S, Yang Q, Deng L, Mo Y, Yu Y. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med. 2014 Sep;8(3):881-886. [CrossRef][PubMed] [PubMed Central]
32. Yi X, Xu C, Huang P, Zhang L, Qing T, Li J, Wang C, Zeng T, Lu J, Han Z. 1-Trifluoromethoxyphenyl-3-(1-Propionylpiperidin-4-yl) Urea Protects the Blood-Brain Barrier Against Ischemic Injury by Upregulating Tight Junction Protein Expression, Mitigating Apoptosis and Inflammation InVivo and In Vitro Model. Front Pharmacol. 2020 Aug 7;11:1197. [CrossRef][PubMed] [PubMed Central]
33. Meroni E, Papini N, Criscuoli F, Casiraghi MC, Massaccesi L, Basilico N, Erba D. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients. 2018 Feb 22;10(2):250. [CrossRef][PubMed] [PubMed Central]
34. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015 Nov;88(Pt B):108-146. [CrossRef][PubMed] [PubMed Central]
35. Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS. 2022 Apr 11;19(1):29. [CrossRef][PubMed] [PubMed Central]
36. Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare Ø, Laake P, Klungland A, Thorén AE, Burkhardt JM, Ottersen OP, Nagelhus EA. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17815-20. [CrossRef][PubMed] [PubMed Central]
37. Rama Rao KV, Chen M, Simard JM, Norenberg MD. Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport. 2003 Dec 19;14(18):2379-82. [CrossRef][PubMed]
38. Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol. 2022 Jan 11;12:825816. [CrossRef][PubMed] [PubMed Central]
39. Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res. 1997 Sep 1;49(5):617-26. [CrossRef][PubMed]
40. Xu W, Borges K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia. 2024 Aug;65(8):2213-2226. [CrossRef][PubMed]
41. Kim Y, Dube SE, Park CB. Brain energy homeostasis: the evolution of the astrocyte-neuron lactate shuttle hypothesis. Korean J Physiol Pharmacol. 2025 Jan 1;29(1):1-8. [CrossRef][PubMed] [PubMed Central]
42. Ritter L, Kleemann D, Hickmann FH, Amaral AU, Sitta Â, Wajner M, Ribeiro CA. Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats. Biochim Biophys Acta. 2015 May;1852(5):759-67. [CrossRef][PubMed]
43. Tian J, Xie ZJ. The Na-K-ATPase and calcium-signaling microdomains. Physiology (Bethesda). 2008 Aug;23:205-11. [CrossRef][PubMed] [PubMed Central]
44. Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell. 2005 Sep;16(9):4034-45. [CrossRef][PubMed] [PubMed Central]
45. Churn SB, Limbrick D, Sombati S, DeLorenzo RJ. Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J Neurosci. 1995 Apr;15(4):3200-14. [CrossRef][PubMed] [PubMed Central]
46. Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci. 2020 Dec 17;21(24):9607. [CrossRef][PubMed] [PubMed Central]
47. Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci. 2021 Oct 28;22(21):11677. [CrossRef][PubMed] [PubMed Central]
48. Hendrickx DAE, van Eden CG, Schuurman KG, Hamann J, Huitinga I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol. 2017 Aug 15;309:12-22. [CrossRef][PubMed]
49. Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis. 2007 Nov;30(6):865-79. [CrossRef][PubMed] [PubMed Central]
50. McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem. 2012 Apr;121(1):28-35. [CrossRef][PubMed] [PubMed Central]
51. Norenberg MD, Rao KV, Jayakumar AR. Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis. 2005 Dec;20(4):303-18. [CrossRef][PubMed]
52. Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM, Norenberg MD. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma. 2014 Jul 15;31(14):1249-57. [CrossRef][PubMed] [PubMed Central]
53. Sapkota A, Halder SK, Milner R. Blood-brain barrier disruption and microglial activation during hypoxia and post-hypoxic recovery in aged mice. Brain Commun. 2024 Dec 17;7(1):fcae456. [CrossRef][PubMed] [PubMed Central]
54. Cui C, Jiang X, Wang Y, Li C, Lin Z, Wei Y, Ni Q. Cerebral Hypoxia-Induced Molecular Alterations and Their Impact on the Physiology of Neurons and Dendritic Spines: A Comprehensive Review. Cell Mol Neurobiol. 2024 Aug 6;44(1):58. [CrossRef][PubMed] [PubMed Central]
55. Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr. 2015 Jan 14;2:144. [CrossRef][PubMed] [PubMed Central]
56. Bélanger-Quintana A, Arrieta Blanco F, Barrio-Carreras D, Bergua Martínez A, Cañedo Villarroya E, García-Silva MT, Lama More R, Martín-Hernández E, López AM, Morales-Conejo M, Pedrón-Giner C, Quijada-Fraile P, Stanescu S, Casanova MM. Recommendations for the Diagnosis and Therapeutic Management of Hyperammonaemia in Paediatric and Adult Patients. Nutrients. 2022 Jul 2;14(13):2755. [CrossRef][PubMed] [PubMed Central]
57. Johannes Häberle. S3-Leitlinie Diagnostik und Therapie von Harnstoffzyklusstörungen [S3 guideline on diagnosis and therapy of urea cycle disorders]. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF); 2020. https://register.awmf.org/de/leitlinien/detail/027-006
58. Azova S, Rapaport R, Wolfsdorf J. Brain injury in children with diabetic ketoacidosis: Review of the literature and a proposed pathophysiologic pathway for the development of cerebral edema. Pediatr Diabetes. 2021 Mar;22(2):148-160. [CrossRef][PubMed] [PubMed Central]
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yaroslav D. Bondarenko, Oksana I. Kauk, Svitlana O. Stetsenko, Svitlana V.Rykhlik

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.






