Short-segment stabilization techniques for burst fractures of the thoracolumbar junction: a finite element study under lateral flexion

Authors

DOI:

https://doi.org/10.25305/unj.331033

Keywords:

burst fractures, thoracolumbar junction, transpedicular fixation, short-segment stabilization, finite element modeling, lateral flexion, intermediate screws

Abstract

Introduction: Burst fractures of the thoracolumbar junction (TLJ, T10–L2) are common spinal injuries associated with a high risk of neurological complications. Transpedicular fixation is one of the most effective treatment methods; however, the optimal choice of fixation configuration remains unresolved. This study aims to analyze the stress-strain state of various short-segment transpedicular fixation configurations for Th12 vertebra burst fractures under lateral flexion loading.

Materials and methods: A finite element model of the Th9–L5 spinal segment with a simulated Th12 burst fracture was created. Four fixation configurations were considered: M1 – short screws in Th11 and L1 (without intermediate screws), M2 – long screws in Th11 and L1 (without intermediate screws), M3 – short screws in Th11 and L1 with intermediate screws in Th12, and M4 – long screws in Th11 and L1 with intermediate screws in Th12.

The models were analyzed using CosmosM software, assessing equivalent von Mises stress at 18 control points. Loads simulated physiological lateral trunk bending.

Results: Models with long screws (M2, M4) demonstrated lower maximum stresses in connecting rods (315.5–321.0 MPa) compared to short screws (324.8–324.9 MPa). The inclusion of intermediate screws (M3, M4) significantly reduced stress in the fractured Th12 vertebra (by up to 28%), in adjacent vertebral endplates (by 18–25%), and at screw entry points into vertebral arches (up to 28%). The lowest fixation screw stresses were observed in the model with long and intermediate screws (up to 38% lower compared to the baseline model M1). However, intermediate screws minimally influenced stresses in the connecting rods (up to 1.2%).

Conclusions: The optimal short-segment transpedicular fixation configuration is the use of long screws in adjacent vertebrae combined with intermediate fixation in the fractured vertebra (M4). This approach provides optimal load distribution, reduces the risk of construct failure, and preserves mobility of adjacent segments. Long screws improve overall system stiffness, while intermediate screws effectively stabilize the damaged segment and significantly unload critical areas of the construct and adjacent anatomical structures.

References

1. Wang H, Zhang Y, Xiang Q, Wang X, Li C, Xiong H, Zhou Y. Epidemiology of traumatic spinal fractures: experience from medical university-affiliated hospitals in Chongqing, China, 2001-2010. J Neurosurg Spine. 2012;17(5):459-468. [CrossRef] [PubMed]

2. Bruno AG, Burkhart K, Allaire B, Anderson DE, Bouxsein ML. Spinal Loading Patterns From Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2017;32(6):1282-1290. [CrossRef] [PubMed]

3. Vaccaro AR, Lim MR, Hurlbert RJ, Lehman RA, Jr., Harrop J, Fisher DC, et al. Surgical decision making for unstable thoracolumbar spine injuries: results of a consensus panel review by the Spine Trauma Study Group. J Spinal Disord Tech. 2006;19(1):1-10. [CrossRef] [PubMed]

4. Rosenthal BD, Boody BS, Jenkins TJ, Hsu WK, Patel AA, Savage JW. Thoracolumbar Burst Fractures. Clin Spine Surg. 2018;31(4):143-151. [CrossRef] [PubMed]

5. Shin SR, Lee SS, Kim JH, Jung JH, Lee SK, Lee GJ, et al. Thoracolumbar burst fractures in patients with neurological deficit: Anterior approach versus posterior percutaneous fixation with laminotomy. J Clin Neurosci. 2020;75:11-18. [CrossRef] [PubMed]

6. Goulet J, Richard-Denis A, Petit Y, Diotalevi L, Mac-Thiong JM. Morphological features of thoracolumbar burst fractures associated with neurological outcome in thoracolumbar traumatic spinal cord injury. Eur Spine J. 2020;29(10):2505-2512. [CrossRef] [PubMed]

7. Jaiswal NK, Kumar V, Puvanesarajah V, Dagar A, Prakash M, Dhillon M, Dhatt SS. Necessity of Direct Decompression for Thoracolumbar Junction Burst Fractures with Neurological Compromise. World Neurosurg. 2020;142:e413-e419. [CrossRef] [PubMed]

8. Aebi M. Transpedicular fixation: Indication, techniques and complications. Current Orthopaedics. 1991;5(2):109-116. [CrossRef]

9. Jindal R, Jasani V, Sandal D, Garg SK. Current status of short segment fixation in thoracolumbar spine injuries. J Clin Orthop Trauma. 2020;11(5):770-777. [CrossRef] [PubMed]

10. Verlaan JJ, Diekerhof CH, Buskens E, van der Tweel I, Verbout AJ, Dhert WJ, Oner FC. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine (Phila Pa 1976). 2004;29(7):803-814. [CrossRef] [PubMed]

11. Ugras AA, Akyildiz MF, Yilmaz M, Sungur I, Cetinus E. Is it possible to save one lumbar segment in the treatment of thoracolumbar fractures? Acta orthopaedica Belgica. 2012;78(1):87-93. [PubMed]

12. Alimohammadi E, Bagheri SR, Joseph B, Sharifi H, Shokri B, Khodadadi L. Analysis of factors associated with the failure of treatment in thoracolumbar burst fractures treated with short-segment posterior spinal fixation. Journal of orthopaedic surgery and research. 2023;18(1):690. [CrossRef] [PubMed]

13. Aly TA. Short Segment versus Long Segment Pedicle Screws Fixation in Management of Thoracolumbar Burst Fractures: Meta-Analysis. Asian Spine J. 2017;11(1):150-160. [CrossRef] [PubMed]

14. Farrokhi MR, Razmkon A, Maghami Z, Nikoo Z. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures. Eur Spine J. 2010;19(10):1651-1656. [CrossRef] [PubMed]

15. Dick W. The "fixateur interne" as a versatile implant for spine surgery. Spine (Phila Pa 1976). 1987;12(9):882-900. [CrossRef] [PubMed]

16. Zhang C, Liu Y. Combined pedicle screw fixation at the fracture vertebrae versus conventional method for thoracolumbar fractures: A meta-analysis. International journal of surgery (London, England). 2018;53:38-47. [CrossRef] [PubMed]

17. Nekhlopochyn OS, Cheshuk YV, Vorodi MV, Tsymbaliuk YV, Karpinskyi MY, Yaresko OV. Biomechanical State of the Operated Thoracolumbar Junction in Lateroflexion. Visnyk Ortopedii Travmatologii Protezuvannia. 2022(2(113)):58-67. [CrossRef]

18. Boccaccio A, Pappalettere C. Mechanobiology of Fracture Healing: Basic Principles and Applications in Orthodontics and Orthopaedics. In: Klika V, editor. Theoretical Biomechanics. Croatia: InTech; 2011. p. 21-48.

19. Cowin SC. Bone Mechanics Handbook. 2nd ed. Boca Raton: CRC Press; 2001. 980 p.

20. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42. [CrossRef] [PubMed]

21. Kurowski PM. Engineering Analysis with COSMOSWorks 2007: SDC Publications; 2007. 263 p. ISBN: 9781585033539.

22. Rao SS. The Finite Element Method in Engineering: Elsevier Science; 2005. 663 p.

23. Wiczenbach T, Pachocki L, Daszkiewicz K, Łuczkiewicz P, Witkowski W. Development and validation of lumbar spine finite element model. PeerJ. 2023;11:e15805. [CrossRef] [PubMed]

24. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine (Phila Pa 1976). 2003;28(6):559-565. [CrossRef] [PubMed]

25. O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res. 2001;12(6):648-657. [CrossRef] [PubMed]

26. Popsuyshapka KO, Teslenko SO, Popov AI, Karpinsky MY, Yaresko OV. Study of the stress-strain state of the spine model for various methods of treatment for fractures of the bodies of the thoracic spine. Trauma. 2022;23(5):53-64. [CrossRef]

27. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Materials & Design. 2024;241:112850. [CrossRef]

28. Xu C, Bai X, Ruan D, Zhang C. Comparative finite element analysis of posterior short segment fixation constructs with or without intermediate screws in the fractured vertebrae for the treatment of type a thoracolumbar fracture. Comput Methods Biomech Biomed Engin. 2024;27(11):1398-1409. [CrossRef] [PubMed]

29. Baaj AA, Reyes PM, Yaqoobi AS, Uribe JS, Vale FL, Theodore N, et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures. J Neurosurg Spine. 2011;14(2):192-197. [CrossRef] [PubMed]

30. Nguyen NQ, Phan TH. The Radiological Complications of Short-Segment Pedicle Screw Fixation Combined with Transforaminal Interbody Fusion in the Treatment of Unstable Thoracolumbar Burst Fracture: A Retrospective Case Series Study in Vietnam. Orthop Res Rev. 2022;14:91-99. [CrossRef] [PubMed]

31. Bezer M, Ketenci IE, Saygi B, Kiyak G. Bicortical versus unicortical pedicle screws in direct vertebral rotation: an in vitro experimental study. J Spinal Disord Tech. 2012;25(6):E178-182. [CrossRef] [PubMed]

32. Shibasaki Y, Tsutsui S, Yamamoto E, Murakami K, Yoshida M, Yamada H. A bicortical pedicle screw in the caudad trajectory is the best option for the fixation of an osteoporotic vertebra: An in-vitro experimental study using synthetic lumbar osteoporotic bone models. Clin Biomech (Bristol, Avon). 2020;72:150-154. [CrossRef] [PubMed]

33. Xu C, Hou Q, Chu Y, Huang X, Yang W, Ma J, Wang Z. How to improve the safety of bicortical pedicle screw insertion in the thoracolumbar vertebrae: analysis base on three-dimensional CT reconstruction of patients in the prone position. BMC Musculoskelet Disord. 2020;21(1):444. [CrossRef] [PubMed]

34. Limthongkul W, Wannaratsiri N, Sukjamsri C, Benyajati CN, Limthongkul P, Tanasansomboon T, et al. Biomechanical Comparison Between Posterior Long-Segment Fixation, Short-Segment Fixation, and Short-Segment Fixation With Intermediate Screws for the Treatment of Thoracolumbar Burst Fracture: A Finite Element Analysis. International journal of spine surgery. 2023;17(3):442-448. [CrossRef] [PubMed]

35. Wang H, Mo Z, Han J, Liu J, Li C, Zhou Y, et al. Extent and location of fixation affects the biomechanical stability of short- or long-segment pedicle screw technique with screwing of fractured vertebra for the treatment of thoracolumbar burst fractures: An observational study using finite element analysis. Medicine (Baltimore). 2018;97(26):e11244. [CrossRef] [PubMed]

36. Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64(3):175-188. [PubMed]

37. Liu H, Wang H, Liu J, Li C, Zhou Y, Xiang L. Biomechanical comparison of posterior intermediate screw fixation techniques with hybrid monoaxial and polyaxial pedicle screws in the treatment of thoracolumbar burst fracture: a finite element study. Journal of orthopaedic surgery and research. 2019;14(1):122. [CrossRef]

38. Liao JC, Chen WJ. Short-Segment Instrumentation with Fractured Vertebrae Augmentation by Screws and Bone Substitute for Thoracolumbar Unstable Burst Fractures. BioMed research international. 2019;2019:4780426. [CrossRef] [PubMed]

39. Liao JC, Chen WP, Wang H. Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis. BMC Musculoskelet Disord. 2017;18(1):262. [CrossRef] [PubMed]

Published

2025-12-29

How to Cite

Nekhlopochyn, O. S., Verbov, V. V., Cheshuk, I. V., Vorodi, M. V., Karpinsky, M. Y., & Yaresko, O. V. (2025). Short-segment stabilization techniques for burst fractures of the thoracolumbar junction: a finite element study under lateral flexion. Ukrainian Neurosurgical Journal, 31(4), 44–54. https://doi.org/10.25305/unj.331033

Issue

Section

Original articles