Long-term implant-related complications following anterior-only stabilization of thoracolumbar junction injuries: a radiological and clinical analysis
DOI:
https://doi.org/10.25305/unj.330291Keywords:
thoracolumbar junction, anterior stabilization, implant-related complications, cage subsidence, segmental kyphosis, bone mineral density, cantilever effectAbstract
Objective: To evaluate the long-term implant-related complications following anterior-only stabilization of traumatic thoracolumbar injuries and to identify structural and radiological patterns associated with construct failure.
Materials and methods: A retrospective multicenter study was conducted at two neurosurgical institutions (Kyiv, Ukraine; Lahore, Pakistan) between 2000 and 2023. Sixteen patients who underwent anterior stabilization at T11–L2 and developed mechanical complications ≥5 years postoperatively were included. Radiographic analysis (CT, X-ray) assessed signs of construct instability, segmental kyphosis (modified Cobb method), global sagittal balance (SVA), and bone mineral density (Hounsfield units, HU). Neurological status was graded using the ASIA scale; pain was assessed via VAS. A complication severity score was developed based on the type of implant failure. Statistical analysis was performed using R version 4.0.5.
Results: The most frequent complications were screw-related failures (87.5%), plate migration (68.8%), and cage subsidence/displacement (31.3%). A direct correlation was observed between the severity of structural failure and kyphotic deformity: the median Cobb angles for high-severity cases reached 57°. Global sagittal imbalance (SVA>50 mm) was present in 31.3% of patients, primarily among those with the most severe failures. Neurological decline occurred in 25% of cases, exclusively in the presence of marked kyphosis or implant migration. A bone density < 135 HU was associated with a higher risk of earlier complication onset (HR = 2.83; p = 0.068). Pain intensity showed only a weak correlation with structural deformity.
Conclusions: Anterior-only stabilization at the thoracolumbar junction provides effective decompression and anterior column support but carries a risk of delayed mechanical complications, particularly in the absence of posterior reinforcement. The cantilever effect remains a key biomechanical vulnerability. Patients with HU < 135 should be considered at an elevated risk. A tailored surgical strategy, meticulous implant positioning, and long-term radiological surveillance are critical. In cases with poor bone quality or suspected PLC injury, posterior stabilization may offer superior long-term outcomes.
References
1. Costa F, Sharif S, Bajamal AH, Shaikh Y, Anania CD, Zileli M. Clinical and Radiological Factors Affecting Thoracolumbar Fractures Outcome: WFNS Spine Committee Recommendations. Neurospine. 2021;18(4):693-703. [CrossRef] [PubMed]
2. Zhao QM, Gu XF, Yang HL, Liu ZT. Surgical outcome of posterior fixation, including fractured vertebra, for thoracolumbar fractures. Neurosciences (Riyadh, Saudi Arabia). 2015;20(4):362-367. [CrossRef] [PubMed]
3. Xu J, Yin Z, Li Y, Xie Y, Hou J. Clinic choice of long or short segment pedicle screw-rod fixation in the treatment of thoracolumbar burst fracture: From scan data to numerical study. Int J Numer Method Biomed Eng. 2023;39(9):e3756. [CrossRef] [PubMed]
4. Rajasekaran S, Kanna RM, Shetty AP. Management of thoracolumbar spine trauma: An overview. Indian J Orthop. 2015;49(1):72-82. [CrossRef] [PubMed]
5. Bruno AG, Burkhart K, Allaire B, Anderson DE, Bouxsein ML. Spinal Loading Patterns From Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2017;32(6):1282-1290. [CrossRef] [PubMed]
6. Ren EH, Deng YJ, Xie QQ, Li WZ, Shi WD, Ma JL, et al. [Anterior versus posterior decompression for the treatment of thoracolumbar fractures with spinal cord injury:a Meta-analysis]. Zhongguo Gu Shang. 2019;32(3):269-277. [PubMed]
7. Mittal S, Rana A, Ahuja K, Ifthekar S, Yadav G, Sudhakar PV, et al. Outcomes of Anterior Decompression and Anterior Instrumentation in Thoracolumbar Burst Fractures-A Prospective Observational Study With Mid-Term Follow-up. J Orthop Trauma. 2022;36(4):136-141. [CrossRef] [PubMed]
8. Kim WS, Jeong TS, Kim WK. Three-column reconstruction through the posterior approach alone for the treatment of a severe lumbar burst fracture in Korea: a case report. J Trauma Inj. 2023;36(3):290-294. [CrossRef] [PubMed]
9. Shokouhi G, Iranmehr A, Ghoilpour P, Fattahi MR, Mousavi ST, Bitaraf MA, Sarpoolaki MK. Indirect Spinal Canal Decompression Using Ligamentotaxis Compared With Direct Posterior Canal Decompression in Thoracolumbar Burst Fractures: A Prospective Randomized Study. Med J Islam Repub Iran. 2023;37:59. [CrossRef] [PubMed]
10. Moreira CHT, Krause W, Meves R. Thoracolombar Burst Fractures: Short Fixation, without Arthrodesis and without Removal of the Implant. Acta Ortop Bras. 2023;31(spe1):e253655. [CrossRef] [PubMed]
11. Vilela A, Couto B, Ferreira D, Cruz A, Azevedo J, Pereira J, et al. Risk factors for failure in short segment pedicle instrumentation in thoracolumbar fractures. Brain Spine. 2025;5:104266. [CrossRef] [PubMed]
12. Hu X, Barber SM, Ji Y, Kou H, Cai W, Cheng M, et al. Implant failure and revision strategies after total spondylectomy for spinal tumors. J Bone Oncol. 2023;42:100497. [CrossRef] [PubMed]
13. Dhanashree S. Holkar , Nitin S. Chandurkar , Pravin Masram , Mridul Ranjan , Pradip S. Mohurle , Praveen Kumar KS. Cobb’s Method For Quantitative Evaluation Of Spinal Curvature: A Review. Juronal of Pharmaceutical Negative Results. 2023;13(Special issue):4153-4159. https://www.pnrjournal.com/index.php/home/article/view/5906
14. Yaman O, Zileli M, Senturk S, Paksoy K, Sharif S. Kyphosis After Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations. Neurospine. 2021;18(4):681-692. [CrossRef] [PubMed]
15. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976). 2005;30(6):682-688. [CrossRef] [PubMed]
16. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2011;26(9):2194-2203. [CrossRef] [PubMed]
17. Shu L, Wang X, Li L, Aili A, Zhang R, Liu W, Muheremu A. Computed Tomography-Based Prediction of Lumbar Pedicle Screw Loosening. BioMed research international. 2023;2023:8084597. [CrossRef] [PubMed]
18. Rupp R, Biering-Sorensen F, Burns SP, Graves DE, Guest J, Jones L, et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top Spinal Cord Inj Rehabil. 2021;27(2):1-22. [CrossRef] [PubMed]
19. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028-2037. [CrossRef] [PubMed]
20. Astrom M, Thet Lwin ZM, Teni FS, Burstrom K, Berg J. Use of the visual analogue scale for health state valuation: a scoping review. Qual Life Res. 2023;32(10):2719-2729. [CrossRef] [PubMed]
21. Thalgott JS, Kabins MB, Timlin M, Fritts K, Giuffre JM. Four year experience with the AO Anterior Thoracolumbar Locking Plate. Spinal Cord. 1997;35(5):286-291. [CrossRef] [PubMed]
22. Wilson JA, Bowen S, Branch CL, Jr., Meredith JW. Review of 31 cases of anterior thoracolumbar fixation with the anterior thoracolumbar locking plate system. Neurosurg Focus. 1999;7(1):e1. [CrossRef] [PubMed]
23. P PO, Tuinebreijer WE, Patka P, den Hartog D. Combined anterior-posterior surgery versus posterior surgery for thoracolumbar burst fractures: a systematic review of the literature. Open Orthop J. 2010;4:93-100. [CrossRef] [PubMed]
24. Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwachter C, et al. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci. 2024;12(19):4875-4902. [CrossRef] [PubMed]
25. Ortiz Torres MJ, Ravipati K, Smith CJ, Norby K, Pleitez J, Galicich W, et al. Outcomes for standalone anterolateral corpectomy for thoracolumbar burst fractures. Neurosurg Rev. 2024;47(1):816. [CrossRef] [PubMed]
26. Bhat AL, Lowery GL, Sei A. The use of titanium surgical mesh-bone graft composite in the anterior thoracic or lumbar spine after complete or partial corpectomy. Eur Spine J. 1999;8(4):304-309. [CrossRef] [PubMed]
27. Kallemeier PM, Beaubien BP, Buttermann GR, Polga DJ, Wood KB. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model. J Spinal Disord Tech. 2008;21(3):216-224. [CrossRef] [PubMed]
28. Li Z, Liu H, Yang M, Zhang W. A biomechanical analysis of four anterior cervical techniques to treating multilevel cervical spondylotic myelopathy: a finite element study. BMC Musculoskelet Disord. 2021;22(1):278. [CrossRef] [PubMed]
29. Calek AK, Cornaz F, Suter M, Fasser MR, Baumgartner S, Sager P, et al. Load distribution on intervertebral cages with and without posterior instrumentation. Spine J. 2024;24(5):889-898. [CrossRef] [PubMed]
30. Sharif S, Shaikh Y, Yaman O, Zileli M. Surgical Techniques for Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations. Neurospine. 2021;18(4):667-680. [CrossRef] [PubMed]
31. Avanzi O, Meves R, Silber Caffaro MF, Buarque de Hollanda JP, Queiroz M. Thoracolumbar Burst Fractures: Correlation between Kyphosis and Function Post Non-Operative Treatment. Rev Bras Ortop. 2009;44(5):408-414. [CrossRef] [PubMed]
32. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28(9):1889-1905. [CrossRef] [PubMed]
33. Hira K, Nagata K, Hashizume H, Asai Y, Oka H, Tsutsui S, et al. Relationship of sagittal spinal alignment with low back pain and physical performance in the general population. Sci Rep. 2021;11(1):20604. [CrossRef] [PubMed]
34. McLain RF. The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine (Phila Pa 1976). 2006;31(11 Suppl):S70-79; discussion S104. [CrossRef] [PubMed]
35. Iwata S, Kotani T, Sakuma T, Iijima Y, Okuwaki S, Ohyama S, et al. Risk Factors for Cage Subsidence in Minimally Invasive Lateral Corpectomy for Osteoporotic Vertebral Fractures. Spine surgery and related research. 2023;7(4):356-362. [CrossRef] [PubMed]
36. Farley CW, Curt BA, Pettigrew DB, Holtz JR, Dollin N, Kuntz Ct. Spinal cord intramedullary pressure in thoracic kyphotic deformity: a cadaveric study. Spine (Phila Pa 1976). 2012;37(4):E224-230. [CrossRef] [PubMed]
37. Sanderson PL, Fraser RD, Hall DJ, Cain CM, Osti OL, Potter GR. Short segment fixation of thoracolumbar burst fractures without fusion. Eur Spine J. 1999;8(6):495-500. [CrossRef] [PubMed]
38. Tisot RA, Vieira JdS, Santos RTd, Badotti AA, Collares DdS, Stumm LD, et al. Burst fracture of the thoracolumbar spine: correlation between kyphosis and clinical result of the treatment. Coluna/Columna. 2015;14(2):129-133. [CrossRef]
39. Su YF, Tsai TH, Lieu AS, Lin CL, Chang CH, Tsai CY, Su HY. Bone-Mounted Robotic System in Minimally Invasive Spinal Surgery for Osteoporosis Patients: Clinical and Radiological Outcomes. Clin Interv Aging. 2022;17:589-599. [CrossRef] [PubMed]
40. Orosz LD, Schuler KA, Allen BJ, Lerebo WT, Yamout T, Roy RT, et al. Performance comparison between Hounsfield units and DXA in predicting lumbar cage subsidence in the degenerative population. Spine J. 2025. [CrossRef] [PubMed]
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Олексій С. Нехлопочин

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.






