Features of peripheral and intrathecal content of immunological markers of inflammation in combatants with mild TBI depending on the chronicity of its course
DOI:
https://doi.org/10.25305/unj.328642Keywords:
combat mild TBI, inflammatory markers of the immune system, time periods of TBIAbstract
Aim: To investigate the levels of inflammatory mediators of the immune system in blood serum and cerebrospinal fluid (CSF) in combatants with mild traumatic brain injury (mTBI) at different time periods after its acquisition.
Materials and methods: IL-6, TNFα, IL-10 and TGFβ1 concentrations were measured according to the instructions of the «Human ELISA Kit» (Elabscience Bionovation Inc., USA) in 53 paired serum and CSF samples from patients with combat mTBI.
Results: In the general group of patients with mTBI, a significant increase in the peripheral content of IL-6, IL-10, TGFβ1 was found, compared with healthy donors (control). When studying these indicators depending on the duration of the post-traumatic period, a persistent increase in the level of IL-6 was shown in combination with significantly increased TGFβ1 concentration indicators and a tendency to an increased level of IL-10. At the same time, the analysis of the central content of inflammatory biomarkers did not reveal their significant changes at different times after TBI, with the exception of a tendency to a decrease in the presence of IL-6, the presence of which in paired analytes prevailed in CSF along with the prevalence of peripheral finding of TNFα, IL-10, TGFβ1.
Conclusions: Thus, the increased content of circulating pro-inflammatory IL-6 and TNFα in the intermediate and remote periods of the course of TBI and a significantly (approximately 6 times) increased level of pleiotropic TGFβ1 in combination with anti-inflammatory IL-10 indicate the persistent nature of inflammation, which indicates the possibility of induction of neurodegenerative processes in combatants with TBI. Such results confirm the feasibility of comprehensive monitoring of immunological markers of inflammation to identify potential directions for adequate pathogenetic therapy even in the context of significantly distant consequences of TBI.
References
1. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013 Jan;136(Pt 1):28-42. [CrossRef] [PubMed] [PubMed Central]
2. Aungst SL, Kabadi SV, Thompson SM, Stoica BA, Faden AI. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab. 2014 Jul;34(7):1223-32. [CrossRef] [PubMed] [PubMed Central]
3. Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 Apr;71(4):505-8. [CrossRef] [PubMed]
4. Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H. Traumatic brain injuries. Nat Rev Dis Primers. 2016 Nov 17;2:16084. [CrossRef] [PubMed]
5. Reams N, Eckner JT, Almeida AA, Aagesen AL, Giordani B, Paulson H, Lorincz MT, Kutcher JS. A Clinical Approach to the Diagnosis of Traumatic Encephalopathy Syndrome: A Review. JAMA Neurol. 2016 Jun 1;73(6):743-9. [CrossRef] [PubMed] [PubMed Central]
6. Mendez MF. What is the Relationship of Traumatic Brain Injury to Dementia? J Alzheimers Dis. 2017;57(3):667-681. [CrossRef] [PubMed]
7. Raza Z, Hussain SF, Ftouni S, Spitz G, Caplin N, Foster RG, Gomes RSM. Dementia in military and veteran populations: a review of risk factors-traumatic brain injury, post-traumatic stress disorder, deployment, and sleep. Mil Med Res. 2021 Oct 13;8(1):55. [CrossRef] [PubMed] [PubMed Central]
8. Bramlett HM, Dietrich WD. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma. 2015 Dec 1;32(23):1834-48. [CrossRef] [PubMed] [PubMed Central]
9. Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res. 2016 Jun 1;1640(Pt A):57-76. [CrossRef] [PubMed] [PubMed Central]
10. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate Neurotransmission in Rodent Models of Traumatic Brain Injury. J Neurotrauma. 2017 Jan 15;34(2):263-272. [CrossRef] [PubMed] [PubMed Central]
11. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron. 2017 Sep 13;95(6):1246-1265. [CrossRef] [PubMed] [PubMed Central]
12. Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017 Mar;13(3):171-191. [CrossRef] [PubMed] [PubMed Central]
13. Booker J, Sinha S, Choudhari K, Dawson J, Singh R. Predicting functional recovery after mild traumatic brain injury: the SHEFBIT cohort. Brain Inj. 2019;33(9):1158-1164. [CrossRef] [PubMed]
14. Edwards KA, Gill JM, Pattinson CL, Lai C, Brière M, Rogers NJ, Milhorn D, Elliot J, Carr W. Interleukin-6 is associated with acute concussion in military combat personnel. BMC Neurol. 2020 May 25;20(1):209. [CrossRef] [PubMed] [PubMed Central]
15. Yamamoto EA, Koike S, Luther M, Dennis L, Lim MM, Raskind M, Pagulayan K, Iliff J, Peskind E, Piantino JA. Perivascular Space Burden and Cerebrospinal Fluid Biomarkers in US Veterans With Blast-Related Mild Traumatic Brain Injury. J Neurotrauma. 2024 Jul;41(13-14):1565-1577. [CrossRef] [PubMed] [PubMed Central]
16. Wojcik BE, Stein CR, Bagg K, Humphrey RJ, Orosco J. Traumatic brain injury hospitalizations of U.S. army soldiers deployed to Afghanistan and Iraq. Am J Prev Med. 2010 Jan;38(1 Suppl):S108-16. [CrossRef] [PubMed]
17. Boyle E, Cancelliere C, Hartvigsen J, Carroll LJ, Holm LW, Cassidy JD. Systematic review of prognosis after mild traumatic brain injury in the military: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch Phys Med Rehabil. 2014 Mar;95(3 Suppl):S230-7. [CrossRef] [PubMed]
18. Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res. 2022 Jan 6;9(1):2. [CrossRef] [PubMed] [PubMed Central]
19. McDonald SJ, O'Brien TJ, Shultz SR. Biomarkers add value to traumatic brain injury prognosis. Lancet Neurol. 2022 Sep;21(9):761-763. [CrossRef] [PubMed]
20. Rodney T, Taylor P, Dunbar K, Perrin N, Lai C, Roy M, Gill J. High IL-6 in military personnel relates to multiple traumatic brain injuries and post-traumatic stress disorder. Behav Brain Res. 2020 Aug 17;392:112715. [CrossRef] [PubMed]
21. Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock. 1995 Nov;4(5):311-7. [CrossRef] [PubMed]
22. Hinson HE, Rowell S, Schreiber M. Clinical evidence of inflammation driving secondary brain injury: a systematic review. J Trauma Acute Care Surg. 2015 Jan;78(1):184-91. [CrossRef] [PubMed] [PubMed Central]
23. Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol. 2013 Mar 26;4:30. [CrossRef] [PubMed] [PubMed Central]
24. McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol. 2016 Dec 5;7:556. [CrossRef] [PubMed] [PubMed Central]
25. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011 Sep;70(3):374-83. [CrossRef] [PubMed]
26. Gerber KS, Alvarez G, Alamian A, Behar-Zusman V, Downs CA. Biomarkers of Neuroinflammation in Traumatic Brain Injury. Clin Nurs Res. 2022 Sep;31(7):1203-1218. [CrossRef] [PubMed]
27. Puntambekar SS, Saber M, Lamb BT, Kokiko-Cochran ON. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain Behav Immun. 2018 Jul;71:9-17. [CrossRef] [PubMed]
28. Needham EJ, Helmy A, Zanier ER, Jones JL, Coles AJ, Menon DK. The immunological response to traumatic brain injury. J Neuroimmunol. 2019 Jul 15;332:112-125. [CrossRef] [PubMed]
29. Yue JK, Kobeissy FH, Jain S, Sun X, Phelps RRL, Korley FK, Gardner RC, Ferguson AR, Huie JR, Schneider ALC, Yang Z, Xu H, Lynch CE, Deng H, Rabinowitz M, Vassar MJ, Taylor SR, Mukherjee P, Yuh EL, Markowitz AJ, Puccio AM, Okonkwo DO, Diaz-Arrastia R, Manley GT, Wang KKW. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2023 Mar 24;4(1):171-183. [CrossRef] [PubMed] [PubMed Central]
30. Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999 Nov 15;101(2):211-21. [CrossRef] [PubMed]
31. Terreni L, De Simoni MG. Role of the brain in interleukin-6 modulation. Neuroimmunomodulation. 1998 May-Aug;5(3-4):214-9. [CrossRef] [PubMed]
32. Malik S, Alnaji O, Malik M, Gambale T, Farrokhyar F, Rathbone MP. Inflammatory cytokines associated with mild traumatic brain injury and clinical outcomes: a systematic review and meta-analysis. Front Neurol. 2023 May 12;14:1123407. [CrossRef] [PubMed] [PubMed Central]
33. Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci (Landmark Ed). 2009 Jan 1;14(10):3795-813. [CrossRef] [PubMed]
34. Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015 Jan 14;35(2):518-26. [CrossRef] [PubMed] [PubMed Central]
35. Weaver LC, Bao F, Dekaban GA, Hryciw T, Shultz SR, Cain DP, Brown A. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp Neurol. 2015 Sep;271:409-22. [CrossRef] [PubMed] [PubMed Central]
36. Geiko VV, Posokhov MF, Lemondzhava ZM. Features of immunological reactivity of patients with combat traumatic brain injury depending on its type and chronicity. Ukr Bull Psychoneurol. 2025;33,1(122):13-8. [CrossRef]
37. Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines. 2022 May 23;10(5):1206. [CrossRef] [PubMed] [PubMed Central]
38. Sofroniew MV. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020 Sep;41(9):758-770. [CrossRef] [PubMed] [PubMed Central]
39. Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021 Mar;24(3):312-325. [CrossRef] [PubMed] [PubMed Central]
40. Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022 May;21(5):339-358. [CrossRef] [PubMed] [PubMed Central]
41. Giovannoni F, Quintana FJ. The Role of Astrocytes in CNS Inflammation. Trends Immunol. 2020 Sep;41(9):805-819. [CrossRef] [PubMed] [PubMed Central]
42. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron. 2020 Nov 25;108(4):608-622. [CrossRef] [PubMed] [PubMed Central]
43. Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016 Sep;37(9):608-620. [CrossRef] [PubMed]
44. Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev. 2021 Jul;68:101335. [CrossRef] [PubMed] [PubMed Central]
45. Patel RK, Prasad N, Kuwar R, Haldar D, Muneer PMA. Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury. Brain Behav Immun. 2017 Aug;64:244-258. [CrossRef] [PubMed]
46. Diniz LP, Matias I, Siqueira M, Stipursky J, Gomes FCA. Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol. 2019 Jul;56(7):4653-4679. [CrossRef] [PubMed]
47. Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis. 2020 Jul 23;11(4):828-850. [CrossRef] [PubMed] [PubMed Central]
48. Koyama Y. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int. 2014 Dec;78:35-42. [CrossRef] [PubMed]
49. Arranz AM, De Strooper B. The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications. Lancet Neurol. 2019 Apr;18(4):406-414. [CrossRef] [PubMed]
50. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014 Oct;94(4):1077-98. [CrossRef] [PubMed]
51. McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int. 2019 Sep;128:70-84. [CrossRef] [PubMed] [PubMed Central]
52. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017 Jan 26;541(7638):481-487. [CrossRef] [PubMed] [PubMed Central]
53. Li Z, Xiao J, Xu X, Li W, Zhong R, Qi L, Chen J, Cui G, Wang S, Zheng Y, Qiu Y, Li S, Zhou X, Lu Y, Lyu J, Zhou B, Zhou J, Jing N, Wei B, Hu J, Wang H. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. Sci Adv. 2021 Mar 12;7(11):eabb6260. [CrossRef] [PubMed] [PubMed Central]
54. Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne). 2022 Dec 1;9:995044. [CrossRef] [PubMed] [PubMed Central]
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Валентина Гейко

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.






