Neuro-ophthalmological symptoms of compressive optic neuropathy depending on chiasmal position and pituitary adenoma extension

Authors

DOI:

https://doi.org/10.25305/unj.327169

Keywords:

neurosurgery, ophthalmology, pituitary adenoma, optic chiasm, compressive optic neuropathy

Abstract

Objective: to analyze the characteristics of compressive optic neuropathy depending on the anatomical position of the optic chiasm.

Materials and methods: The study was conducted at the A.P. Romodanov Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine between 2018 and 2024, within the Departments of Endonasal Skull Base Neurosurgery and Neuro-ophthalmology. We retrospectively analyzed data from a consecutive surgical series involving 212 patients (424 eyes) diagnosed with pituitary adenoma (PA) and compressive optic neuropathy manifested by decreased visual acuity and/or visual field defects. The cohort included 116 women (54.7%) and 96 men (45.3%) aged 18 to 76 years (mean age 52.3 ± 11.8 years). Based on the direction of PA growth and the anatomical position of the optic chiasm, patients were classified into three groups:

Group I – anterior growth and/or posterior chiasmal position (34 patients, 16.1%; 68 eyes); Group II – suprasellar growth and/or central chiasmal position (147 patients, 69.3%; 294 eyes); Group III – posterior growth and/or anterior chiasmal position (31 patients, 14.6%; 62 eyes).

Results: No statistically significant difference in mean age was observed among the groups (p > 0.05). The mean duration of visual impairment was (14.8 ± 3.9) months in Group I, (8.80 ± 0.95) months in Group II, and (9.1 ± 2.5) months in Group III (p > 0.05). Mean visual acuity was 0.60 ± 0.05, 0.60 ± 0.03, and 0.60 ± 0.04, respectively (p > 0.05). Mean cumulative loss of light sensitivity was (10.39 ± 0.80) dB, (11.2 ± 0.3) dB, and (10.25 ± 0.80) dB in Groups I, II, and III, respectively (p > 0.05). The mean tumor volume of PA was significantly larger in Groups I ((20.4 ± 6.7) cm³) and III ((24.9 ± 5.9) cm³) compared to Group II ((9.02 ± 0.59) cm³) (p < 0.05).

Regarding visual field patterns: posterior chiasmal position was associated with superior temporal quadrantanopia (32.4%), central chiasmal position with temporal hemianopia and central scotoma (30.6%), anterior chiasmal position with homonymous hemianopia (35.5%).

Conclusions. In patients with pituitary macroadenomas, visual disturbances may be delayed or absent when the chiasm is located in anterior or posterior positions. This is likely due to reduced compressive impact on the opto-chiasmal complex in these anatomical configurations.

References

1. Rhoton AL Jr. The sellar region. Neurosurgery. 2002 Oct;51(4 Suppl):S335-74. [CrossRef] [PubMed]

2. Griessenauer CJ, Raborn J, Mortazavi MM, Tubbs RS, Cohen-Gadol AA. Relationship between the pituitary stalk angle in prefixed, normal, and postfixed optic chiasmata: an anatomic study with microsurgical application. Acta Neurochir (Wien). 2014 Jan;156(1):147-51. [CrossRef] [PubMed]

3. Schiefer U, Isbert M, Mikolaschek E, Mildenberger I, Krapp E, Schiller J, Thanos S, Hart W. Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome. Graefes Arch Clin Exp Ophthalmol. 2004 Jun;242(6):468-77. [CrossRef] [PubMed]

4. Miller NR, Newman NJ, Biousse V, Kerrison JB. Walsh & Hoyt's Clinical Neuro-Ophthalmology, sixth ed. Lippincott Williams & Wilkins, Philadelphia; 2005. 320 p.

5. Renn WH, Rhoton AL Jr. Microsurgical anatomy of the sellar region. J Neurosurg. 1975 Sep;43(3):288-98. [CrossRef] [PubMed]

6. Bergland RM, Ray BS, Torack RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg. 1968 Feb;28(2):93-9. [CrossRef] [PubMed]

7. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004 Aug 1;101(3):613-9. [CrossRef] [PubMed]

8. Wang EW, Zanation AM, Gardner PA, Schwartz TH, Eloy JA, Adappa ND, Bettag M, Bleier BS, Cappabianca P, Carrau RL, Casiano RR, Cavallo LM, Ebert CS Jr, El-Sayed IH, Evans JJ, Fernandez-Miranda JC, Folbe AJ, Froelich S, Gentili F, Harvey RJ, Hwang PH, Jane JA Jr, Kelly DF, Kennedy D, Knosp E, Lal D, Lee JYK, Liu JK, Lund VJ, Palmer JN, Prevedello DM, Schlosser RJ, Sindwani R, Solares CA, Tabaee A, Teo C, Thirumala PD, Thorp BD, de Arnaldo Silva Vellutini E, Witterick I, Woodworth BA, Wormald PJ, Snyderman CH. ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol. 2019 Jul;9(S3):S145-S365. [CrossRef] [PubMed]

9. Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol. 2022 Mar;33(1):6-26. [CrossRef] [PubMed]

10. Rutkowski MJ, Chang KE, Cardinal T, Du R, Tafreshi AR, Donoho DA, Brunswick A, Micko A, Liu CJ, Shiroishi MS, Carmichael JD, Zada G. Development and clinical validation of a grading system for pituitary adenoma consistency. J Neurosurg. 2020 Jun 5;134(6):1800-1807. [CrossRef] [PubMed]

11. Abouaf L, Vighetto A, Lebas M. Neuro-ophthalmologic exploration in non-functioning pituitary adenoma. Ann Endocrinol (Paris). 2015 Jul;76(3):210-9. [CrossRef] [PubMed]

12. Sivakumar W, Chamoun R, Nguyen V, Couldwell WT. Incidental pituitary adenomas. Neurosurg Focus. 2011 Dec;31(6):E18. [CrossRef] [PubMed]

13. Marigil Sanchez M, Karekezi C, Almeida JP, Kalyvas A, Castro V, Velasquez C, Gentili F. Management of Giant Pituitary Adenomas: Role and Outcome of the Endoscopic Endonasal Surgical Approach. Neurosurg Clin N Am. 2019 Oct;30(4):433-444. [CrossRef] [PubMed]

14. Westall SJ, Aung ET, Kejem H, Daousi C, Thondam SK. Management of pituitary incidentalomas. Clin Med (Lond). 2023 Mar;23(2):129-134. [CrossRef] [PubMed] [PubMed Central]

15. Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev. 2022 Nov 25;43(6):1003-1037. [CrossRef] [PubMed] [PubMed Central]

16. Yasargil M.G. Microsurgery Applied to Neurosurgery. Stuttgart: Thieme, 1969

17. Lee JP, Park IW, Chung YS. The volume of tumor mass and visual field defect in patients with pituitary macroadenoma. Korean J Ophthalmol. 2011 Feb;25(1):37-41. [CrossRef] [PubMed] [PubMed Central]

18. Nishimura M, Kurimoto T, Yamagata Y, Ikemoto H, Arita N, Mimura O. Giant pituitary adenoma manifesting as homonymous hemianopia. Jpn J Ophthalmol. 2007 Mar-Apr;51(2):151-3. [CrossRef] [PubMed]

19. Foroozan R. Chiasmal syndromes. Curr Opin Ophthalmol. 2003 Dec;14(6):325-31. [CrossRef] [PubMed]

20. Glisson CC. Visual loss due to optic chiasm and retrochiasmal visual pathway lesions. Continuum (Minneap Minn). 2014 Aug;20(4 Neuro-ophthalmology):907-21. [CrossRef] [PubMed] [PubMed Central]

21. Gnanalingham KK, Bhattacharjee S, Pennington R, Ng J, Mendoza N. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatry. 2005 Mar;76(3):415-9. [CrossRef] [PubMed] [PubMed Central]

22. Guk MO, Ukrainets OV. Endoscopic endonasal surgical management of giant pituitary adenomas with extension into ventricle system. Ukr Neurosurg J. 2023Dec.26;29(4):13-21. [CrossRef]

Published

2025-09-30

How to Cite

Iegorova, K. S., & Ukrainets, O. V. (2025). Neuro-ophthalmological symptoms of compressive optic neuropathy depending on chiasmal position and pituitary adenoma extension. Ukrainian Neurosurgical Journal, 31(3), 22–29. https://doi.org/10.25305/unj.327169

Issue

Section

Original articles