Evaluation of the efficacy of combined vitamin D3 and K2 therapy in reducing implant-associated complication risk and improving spinal fusion stability
DOI:
https://doi.org/10.25305/unj.320680Keywords:
spine surgery, bone mineral density, vitamin D deficiency, implant-related complications, spinal fusion stabilityAbstract
In the last decade, the use of implants in spinal surgery has significantly increased, particularly interbody devices and transpedicular fixators. This trend has necessitated refining approaches aimed at preventing intra- and postoperative complications. A key factor influencing the effectiveness of stabilization procedures is bone mineral density (BMD).
Objective: To investigate the relationship among vitamin D levels, BMD, and the incidence of implant-related failures in patients who have undergone stabilization procedures on the spine, as well as to evaluate the role of postoperative correction of vitamin D₃ and K2 deficiencies in enhancing fixation stability and reducing complication risks.
Materials and Methods: A retrospective single-center cohort study was conducted in specialized departments of Romodanov Neurosurgery Institute NAMS of Ukraine, from January 2023 to December 2024. A total of 250 patients who underwent spinal surgery with the use of transpedicular screws and/or interbody implants were analyzed with respect to their age, sex, body mass index, serum vitamin D (25-(OH)D₃) levels, and BMD (according to computed tomography data). Original grading scales were used to evaluate implant-related complications. Postoperative correction of vitamin D deficiency was carried out using “Solemax®” (vitamin D₃, vitamin K2, and ω-3 polyunsaturated fatty acids).
Results: A high prevalence of vitamin D deficiency and reduced BMD was recorded among patients undergoing elective stabilization surgeries on the spine. A significant correlation was detected between 25-(OH)D₃ levels and bone tissue status. After 4 months of “Solemax®” administration, all patients achieved reference 25-(OH)D3 levels, indicating the effectiveness of the therapy. In the correction group, an increase in BMD was observed, whereas in the comparison group, BMD values decreased. The incidence of implant-related complications was statistically reduced: the risk of screw loosening decreased by 69.84% over the first 6 months and by 85.06% over one year, while the risk of interbody implant migration declined by 56.2% and 64.7%, respectively.
Conclusions: The stability of spinal fusion is more contingent upon the adaptive response of bone tissue to implantation than on absolute BMD values. The use of a balanced combination of vitamins D₃ and K2 contributes to enhanced fixation stability and a lower risk of postoperative complications.
References
1. Thimbleby H. Technology and the future of healthcare. J Public Health Res. 2013;2(3):e28. [CrossRef] [PubMed]
2. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet (London, England). 2015;385 Suppl 2:S11. [CrossRef] [PubMed]
3. Meara JG, Leather AJ, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet (London, England). 2015;386(9993):569-624. [CrossRef] [PubMed]
4. Kobayashi K, Ando K, Nishida Y, Ishiguro N, Imagama S. Epidemiological trends in spine surgery over 10 years in a multicenter database. Eur Spine J. 2018;27(8):1698-1703. [CrossRef] [PubMed]
5. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012;37(1):67-76. [CrossRef] [PubMed]
6. Reisener MJ, Pumberger M, Shue J, Girardi FP, Hughes AP. Trends in lumbar spinal fusion-a literature review. Journal of spine surgery (Hong Kong). 2020;6(4):752-761. [CrossRef] [PubMed]
7. Johnson WC, Seifi A. Trends of the neurosurgical economy in the United States. J Clin Neurosci. 2018;53:20-26. [CrossRef] [PubMed]
8. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990;15(1):11-14. [CrossRef] [PubMed]
9. Baky FJ, Milbrandt T, Echternacht S, Stans AA, Shaughnessy WJ, Larson AN. Intraoperative Computed Tomography-Guided Navigation for Pediatric Spine Patients Reduced Return to Operating Room for Screw Malposition Compared With Freehand/Fluoroscopic Techniques. Spine deformity. 2019;7(4):577-581. [CrossRef] [PubMed]
10. Budu A, Sims-Williams H, Radatz M, Bacon A, Bhattacharyya D, Athanassacopoulos M, et al. Comparison of Navigated versus Fluoroscopic-Guided Pedicle Screw Placement Accuracy and Complication Rate. World Neurosurg. 2020;144:e541-e545. [CrossRef] [PubMed]
11. Theologou M, Theologou T, Zevgaridis D, Skoulios N, Matejic S, Tsonidis C. Pedicle screw placement accuracy impact and comparison between grading systems. Surg Neurol Int. 2017;8:131. [CrossRef] [PubMed]
12. Kwon WK, Theologis AA, Kim JH, Moon HJ. Lumbar fusion surgery in the era of an aging society: analysis of a nationwide population cohort with minimum 8-year follow-up. Spine J. 2024;24(8):1378-1387. [CrossRef] [PubMed]
13. Orias AAE, Sheha E, Zavras A, John P, Fitch AA, An HS, et al. CT Osteoabsorptiometry Assessment of Subchondral Bone Density Predicts Intervertebral Implant Subsidence in a Human ACDF Cadaver Model. Global Spine J. 2023;13(5):1374-1383. [CrossRef] [PubMed]
14. Li JC, Yang ZQ, Xie TH, Song ZT, Song YM, Zeng JC. Deterioration of the fixation segment’s stress distribution and the strength reduction of screw holding position together cause screw loosening in ALSR fixed OLIF patients with poor BMD. Front Bioeng Biotechnol. 2022;10:922848. [CrossRef] [PubMed]
15. Jeong C, Ha J, Yoo JI, Lee YK, Kim JH, Ha YC, et al. Effects of Bazedoxifene/Vitamin D Combination Therapy on Serum Vitamin D Levels and Bone Turnover Markers in Postmenopausal Women with Osteopenia: A Randomized Controlled Trial. J Bone Metab. 2023;30(2):189-199. [CrossRef] [PubMed]
16. Hamzah H, Huwae T, Chodidjah C. Association between Vitamin D and Calcium Level and BMD Alteration in Post-Menopausal Osteoporosis Patients Treated with Bisphosphonate Therapy for at Least 1 Year in Saiful Anwar Hospital Malang. Indonesian Journal of Cancer Chemoprevention. 2022.
17. Pludowski P, Takacs I, Boyanov M, Belaya Z, Diaconu CC, Mokhort T, et al. Clinical Practice in the Prevention, Diagnosis and Treatment of Vitamin D Deficiency: A Central and Eastern European Expert Consensus Statement. Nutrients. 2022;14(7). [CrossRef] [PubMed]
18. Michalski AS, Besler BA, Michalak GJ, Boyd SK. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys. 2020;78:55-63. [CrossRef] [PubMed]
19. Berger-Groch J, Thiesen DM, Ntalos D, Grossterlinden LG, Hesse E, Fensky F, et al. Determination of bone density in patients with sacral fractures via CT scan. Orthopaedics & traumatology, surgery & research : OTSR. 2018;104(7):1037-1041. [CrossRef] [PubMed]
20. Cansu A, Atasoy D, Eyuboglu I, Karkucak M. Diagnostic efficacy of routine contrast-enhanced abdominal CT for the assessment of osteoporosis in the Turkish population. Turk J Med Sci. 2020;50(1):110-116. [CrossRef] [PubMed]
21. Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment: A Qualitative Systematic Review. J Bone Joint Surg Am. 2017;99(18):1580-1590. [CrossRef] [PubMed]
22. Demay MB, Pittas AG, Bikle DD, Diab DL, Kiely ME, Lazaretti-Castro M, et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2024;109(8):1907-1947. [CrossRef] [PubMed]
23. Bokov A, Pavlova S, Bulkin A, Aleynik A, Mlyavykh S. Potential contribution of pedicle screw design to loosening rate in patients with degenerative diseases of the lumbar spine: An observational study. World J Orthop. 2021;12(5):310-319. [CrossRef] [PubMed]
24. Chen CH, Chen DC, Huang HM, Chuang HY, Hsu WL, Cho DY, et al. Level-based analysis of screw loosening with cortical bone trajectory screws in patients with lumbar degenerative disease. Medicine (Baltimore). 2020;99(40):e22186. [CrossRef] [PubMed]
25. Pearson HB, Dobbs CJ, Grantham E, Niebur GL, Chappuis JL, Boerckel JD. Intraoperative biomechanics of lumbar pedicle screw loosening following successful arthrodesis. J Orthop Res. 2017;35(12):2673-2681. [CrossRef] [PubMed]
26. Tanioka S, Ishida F, Kuraishi K, Tanaka K, Shimosaka S, Suzuki H, et al. A Novel Radiologic Assessment of Screw Loosening Focusing on Spatial Position Change of Screws Using an Iterative Closest Point Algorithm with Stereolithography Data: Technical Note. World Neurosurg. 2019;124:171-177. [CrossRef] [PubMed]
27. Hou Y, Shi H, Shi H, Zhao T, Shi J, Shi G. A meta-analysis of risk factors for cage migration after lumbar fusion surgery. World Neurosurg X. 2023;18:100152. [CrossRef] [PubMed]
28. Li H, Wang H, Zhu Y, Ding W, Wang Q. Incidence and risk factors of posterior cage migration following decompression and instrumented fusion for degenerative lumbar disorders. Medicine (Baltimore). 2017;96(33):e7804. [CrossRef] [PubMed]
29. Zhou ZJ, Xia P, Zhao FD, Fang XQ, Fan SW, Zhang JF. Endplate injury as a risk factor for cage retropulsion following transforaminal lumbar interbody fusion: An analysis of 1052 cases. Medicine (Baltimore). 2021;100(5):e24005. [CrossRef] [PubMed]
30. Mostafa WZ, Hegazy RA. Vitamin D and the skin: Focus on a complex relationship: A review. J Adv Res. 2015;6(6):793-804. [CrossRef] [PubMed]
31. Young AR, Morgan KA, Harrison GI, Lawrence KP, Petersen B, Wulf HC, et al. A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. Proc Natl Acad Sci U S A. 2021;118(40). [CrossRef] [PubMed]
32. Chaiprasongsuk A, Janjetovic Z, Kim TK, Jarrett SG, D’Orazio JA, Holick MF, et al. Protective effects of novel derivatives of vitamin D(3) and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019;24:101206. [CrossRef] [PubMed]
33. Slominski A, Kim TK, Zmijewski MA, Janjetovic Z, Li W, Chen J, et al. Novel vitamin D photoproducts and their precursors in the skin. Dermatoendocrinol. 2013;5(1):7-19. [CrossRef] [PubMed]
34. Tuckey RC, Li W, Ma D, Cheng CYS, Wang KM, Kim TK, et al. CYP27A1 acts on the pre-vitamin D3 photoproduct, lumisterol, producing biologically active hydroxy-metabolites. J Steroid Biochem Mol Biol. 2018;181:1-10. [CrossRef] [PubMed]
35. Guzikowski J, Krzyscin J, Czerwinska A, Raszewska W. Adequate vitamin D(3) skin synthesis versus erythema risk in the Northern Hemisphere midlatitudes. J Photochem Photobiol B. 2018;179:54-65. [CrossRef] [PubMed]
36. Osmancevic A, Sandstrom K, Gillstedt M, Landin-Wilhelmsen K, Larko O, Wennberg Larko AM, et al. Vitamin D production after UVB exposure - a comparison of exposed skin regions. J Photochem Photobiol B. 2015;143:38-43. [CrossRef] [PubMed]
37. Libon F, Courtois J, Le Goff C, Lukas P, Fabregat-Cabello N, Seidel L, et al. Sunscreens block cutaneous vitamin D production with only a minimal effect on circulating 25-hydroxyvitamin D. Archives of osteoporosis. 2017;12(1):66. [CrossRef] [PubMed]
38. Libon F, Cavalier E, Nikkels AF. Skin color is relevant to vitamin D synthesis. Dermatology. 2013;227(3):250-254. [CrossRef] [PubMed]
39. Shin MH, Lee Y, Kim MK, Lee DH, Chung JH. UV increases skin-derived 1alpha,25-dihydroxyvitamin D(3) production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. J Steroid Biochem Mol Biol. 2019;195:105449. [CrossRef] [PubMed]
40. Benedik E. Sources of vitamin D for humans. Int J Vitam Nutr Res. 2022;92(2):118-125. [CrossRef] [PubMed]
41. Roseland JM, Phillips KM, Patterson KY, Pehrsson PR, Taylor CL. Vitamin D in Foods. In: Feldman D, editor. Vitamin D: Academic Press; 2018. p. 41-77.
42. Fraser DR. Physiological significance of vitamin D produced in skin compared with oral vitamin D. J Nutr Sci. 2022;11:e13. [CrossRef] [PubMed]
43. Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne). 2019;10:910. [CrossRef] [PubMed]
44. Bikle DD, Schwartz J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front Endocrinol (Lausanne). 2019;10:317. [CrossRef] [PubMed]
45. Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014;144 Pt A:132-137. [CrossRef] [PubMed]
46. Kotake-Nara E, Komba S, Hase M. Uptake of Vitamins D(2), D(3), D(4), D(5), D(6), and D(7) Solubilized in Mixed Micelles by Human Intestinal Cells, Caco-2, an Enhancing Effect of Lysophosphatidylcholine on the Cellular Uptake, and Estimation of Vitamins D’ Biological Activities. Nutrients. 2021;13(4). [CrossRef] [PubMed]
47. Thacher TD, Fischer PR, Singh RJ, Roizen J, Levine MA. CYP2R1 Mutations Impair Generation of 25-hydroxyvitamin D and Cause an Atypical Form of Vitamin D Deficiency. J Clin Endocrinol Metab. 2015;100(7):E1005-1013. [CrossRef] [PubMed]
48. Willnow TE, Nykjaer A. Pathways for kidney-specific uptake of the steroid hormone 25-hydroxyvitamin D3. Curr Opin Lipidol. 2002;13(3):255-260. [CrossRef] [PubMed]
49. Segersten U, Correa P, Hewison M, Hellman P, Dralle H, Carling T, et al. 25-hydroxyvitamin D(3)-1alpha-hydroxylase expression in normal and pathological parathyroid glands. J Clin Endocrinol Metab. 2002;87(6):2967-2972. [CrossRef] [PubMed]
50. Balesaria S, Sangha S, Walters JR. Human duodenum responses to vitamin D metabolites of TRPV6 and other genes involved in calcium absorption. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1193-1197. [CrossRef] [PubMed]
51. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide‑induced acute lung injury via regulation of the renin‑angiotensin system. Molecular medicine reports. 2017;16(5):7432-7438. [CrossRef] [PubMed]
52. Jia J, Tao X, Tian Z, Liu J, Ye X, Zhan Y. Vitamin D receptor deficiency increases systolic blood pressure by upregulating the renin-angiotensin system and autophagy. Experimental and therapeutic medicine. 2022;23(4):314. [CrossRef] [PubMed]
53. Qiao W, Yu S, Sun H, Chen L, Wang R, Wu X, et al. 1,25-Dihydroxyvitamin D insufficiency accelerates age-related bone loss by increasing oxidative stress and cell senescence. Am J Transl Res. 2020;12(2):507-518. [PubMed]
54. Kuwata N, Mukohda H, Uchida H, Takamatsu R, Binici MM, Yamada T, et al. Renal Endocytic Regulation of Vitamin D Metabolism during Maturation and Aging in Laying Hens. Animals (Basel). 2024;14(3). [CrossRef] [PubMed]
55. Zhao J, Zhou G, Yang J, Pan J, Sha B, Luo M, et al. Effects of resveratrol in an animal model of osteoporosis: a meta-analysis of preclinical evidence. Front Nutr. 2023;10:1234756. [CrossRef] [PubMed]
56. Kim S, Jang S, Ahn J, Lee S, Lee O. Analysis of type I osteoporosis animal models using synchrotron radiation. Microsc Res Tech. 2022;85(1):364-372. [CrossRef] [PubMed]
57. Pierce JL, Sharma AK, Roberts RL, Yu K, Irsik DL, Choudhary V, et al. The Glucocorticoid Receptor in Osterix-Expressing Cells Regulates Bone Mass, Bone Marrow Adipose Tissue, and Systemic Metabolism in Female Mice During Aging. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2022;37(2):285-302. [CrossRef] [PubMed]
58. Turner AG, Hanrath MA, Morris HA, Atkins GJ, Anderson PH. The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol. 2014;144 Pt A:114-118. [CrossRef] [PubMed]
59. Sittichokechaiwut A. Dynamic mechanical stimulation for bone tissue engineering (Doctoral dissertation, University of Sheffield). 2010. https://etheses.whiterose.ac.uk/id/eprint/14959/
60. Hammer A. The paradox of Wolff’s theories. Ir J Med Sci. 2015;184(1):13-22. [CrossRef] [PubMed]
61. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010 Jun;30(12):3071-85. [CrossRef] [PubMed]
62. Izumi M, Nobuhiko N, Junko S, Taiji A. Apoptosis of primary murine osteocytes stimulated by mechanical force depends on nitric oxide production. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME. 2019;32:2F33. [CrossRef]
63. Liang B, Wang H, Wu D, Wang Z. Macrophage M1/M2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation. J Leukoc Biol. 2021;110(3):433-447. [CrossRef] [PubMed]
64. Potocka-Baklazec M, Sakowicz-Burkiewicz M, Kuczkowski J, Pawelczyk T, Stankiewicz C, Sierszen W, et al. Expression of TNF-alpha, OPG, IL-1beta and the presence of the measles virus RNA in the stapes of the patients with otosclerosis. Eur Arch Otorhinolaryngol. 2015;272(8):1907-1912. [CrossRef] [PubMed]
65. Vijayendra Chary A, Hemalatha R. Effect of 1,25(OH)2D3 and 25(OH)D3 on FOXP3, IgE Receptors and Vitamin D Regulating Enzymes Expression in Lymphocyte Cell Lines. Austin Immunol. 2016; 1(2): 1010. https://austinpublishinggroup.com/austin-immunology/fulltext/ai-v1-id1010.php
66. Bi CS, Wang J, Qu HL, Li X, Tian BM, Ge S, et al. Calcitriol suppresses lipopolysaccharide-induced alveolar bone damage in rats by regulating T helper cell subset polarization. J Periodontal Res. 2019;54(6):612-623. [CrossRef] [PubMed]
67. Gil A, Plaza-Diaz J, Mesa MD. Vitamin D: Classic and Novel Actions. Ann Nutr Metab. 2018;72(2):87-95. [CrossRef] [PubMed]
68. Fonseca M, Costa L, Pinheiro AD, Aguiar TD, Quinelato V, Bonato L, Almeida FD, Granjeiro J, Casado P. Peri-implant mucosae inflammation during osseointegration is correlated with low levels of epidermal growth factor/epidermal growth factor receptor in the peri-implant mucosae. International Journal of Growth Factors and Stem Cells in Dentistry. 2018 Jan 1;1(1):17.
69. Didier P, Piotrowski B, Le Coz G, Laheurte P. Topology optimization for the control of load transfer at the bone-implant interface: a preliminary numerical study. Computer Methods in Biomechanics and Biomedical Engineering. 2020;23(sup1):S82–4. [CrossRef]
70. Vandergugten S, Cornelis MA, Mahy P, Nyssen-Behets C. Microradiographic and histological evaluation of the bone-screw and bone-plate interface of orthodontic miniplates in patients. Eur J Orthod. 2015;37(3):325-329. [CrossRef] [PubMed]
71. Liu P, Zhou B, Chen F, Dai Z, Kang Y. Effect of Trabecular Microstructure of Spinous Process on Spinal Fusion and Clinical Outcomes After Posterior Lumbar Interbody Fusion: Bone Surface/Total Volume as Independent Favorable Indicator for Fusion Success. World Neurosurg. 2020;136:e204-e213. [CrossRef] [PubMed]
72. Ishimoto T, Yamada K, Takahashi H, Takahata M, Ito M, Hanawa T, et al. Trabecular health of vertebrae based on anisotropy in trabecular architecture and collagen/apatite micro-arrangement after implantation of intervertebral fusion cages in the sheep spine. Bone. 2018;108:25-33. [CrossRef] [PubMed]
73. Xu Y, Zhou M, Liu H, Zhang Q, Hu Z, Zhang N, Ren Y. [Effect of 1,25-dihydroxyvitamin D3 on posterior transforaminal lumbar interbody fusion in patients with osteoporosis and lumbar disc degenerative disease]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014 Aug;28(8):969-72. Chinese. [PubMed]
74. Ravindra VM, Godzik J, Dailey AT, Schmidt MH, Bisson EF, Hood RS, et al. Vitamin D Levels and 1-Year Fusion Outcomes in Elective Spine Surgery: A Prospective Observational Study. Spine (Phila Pa 1976). 2015;40(19):1536-1541. [CrossRef] [PubMed]
75. Kerezoudis P, Rinaldo L, Drazin D, Kallmes D, Krauss W, Hassoon A, et al. Association Between Vitamin D Deficiency and Outcomes Following Spinal Fusion Surgery: A Systematic Review. World Neurosurg. 2016;95:71-76. [CrossRef] [PubMed]
76. Mayo BC, Massel DH, Yacob A, Narain AS, Hijji FY, Jenkins NW, et al. A Review of Vitamin D in Spinal Surgery: Deficiency Screening, Treatment, and Outcomes. International journal of spine surgery. 2020;14(3):447-454. [CrossRef] [PubMed]
77. Xu HW, Shen B, Hu T, Zhao WD, Wu DS, Wang SJ. Preoperative vitamin D status and its effects on short-term clinical outcomes in lumbar spine surgery. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2020;25(5):787-792. [CrossRef] [PubMed]
78. Kim TH, Yoon JY, Lee BH, Jung HS, Park MS, Park JO, et al. Changes in vitamin D status after surgery in female patients with lumbar spinal stenosis and its clinical significance. Spine (Phila Pa 1976). 2012;37(21):E1326-1330. [CrossRef] [PubMed]
79. Wang W, Kong C, Pan F, Wang Y, Wu X, Pei B, et al. Biomechanical comparative analysis of effects of dynamic and rigid fusion on lumbar motion with different sagittal parameters: An in vitro study. Front Bioeng Biotechnol. 2022;10:943092. [CrossRef] [PubMed]
80. Korkmaz M, Akgul T, Sariyilmaz K, Ozkunt O, Dikici F, Yazicioglu O. Effectiveness of posterior structures in the development of proximal junctional kyphosis following posterior instrumentation: A biomechanical study in a sheep spine model. Acta Orthop Traumatol Turc. 2019;53(5):385-389. [CrossRef] [PubMed]
81. Henninger HB, Ellis BJ, Scott SA, Weiss JA. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament. J Mech Behav Biomed Mater. 2019;99:118-126. [CrossRef] [PubMed]
82. Qiu J, Choi CY, Man GC, He X, Yu M, Cao M, Wang Q, Ng JP, Yung PS, Ong MT. Serum vitamin D insufficiency is correlated with quadriceps neuromuscular functions in patients with anterior cruciate ligament injury: A preliminary study. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2024 Jan 16;35:76-80. [CrossRef] [PubMed]
83. Yashiro M, Ohya M, Mima T, Nakashima Y, Kawakami K, Yamamoto S, et al. Active vitamin D and vitamin D analogs stimulate fibroblast growth factor 23 production in osteocyte-like cells via the vitamin D receptor. J Pharm Biomed Anal. 2020;182:113139. [CrossRef] [PubMed]
84. Hu L, Ji J, Li D, Meng J, Yu B. The combined effect of vitamin K and calcium on bone mineral density in humans: a meta-analysis of randomized controlled trials. Journal of orthopaedic surgery and research. 2021;16(1):592. [CrossRef] [PubMed]
85. Kuang X, Liu C, Guo X, Li K, Deng Q, Li D. The combination effect of vitamin K and vitamin D on human bone quality: a meta-analysis of randomized controlled trials. Food Funct. 2020;11(4):3280-3297. [CrossRef] [PubMed]
86. Bus K, Szterk A. Relationship between Structure and Biological Activity of Various Vitamin K Forms. Foods. 2021;10(12). [CrossRef] [PubMed]
87. Schroder M, Riksen EA, He J, Skallerud BH, Moller ME, Lian AM, et al. Vitamin K2 Modulates Vitamin D-Induced Mechanical Properties of Human 3D Bone Spheroids In Vitro. JBMR Plus. 2020;4(9):e10394. [CrossRef] [PubMed]
88. Nicoll R, McLaren Howard J, Henein M. Cardiovascular Calcification and Bone: A Comparison of the Effects of Dietary and Serum Vitamin K and its Dependent Proteins. International Cardiovascular Forum Journal. 2015;4:6. [CrossRef]
89. Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci. 2023;24(10). [CrossRef] [PubMed]
90. El Asmar MS, Naoum JJ, Arbid EJ. Vitamin k dependent proteins and the role of vitamin k2 in the modulation of vascular calcification: a review. Oman Med J. 2014;29(3):172-177. [CrossRef] [PubMed]
91. Iwamoto J, Takeda T, Ichimura S. Effect of combined administration of vitamin D3 and vitamin K2 on bone mineral density of the lumbar spine in postmenopausal women with osteoporosis. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2000;5(6):546-551. [CrossRef] [PubMed]
92. Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas. 2002;41(3):211-221. [CrossRef] [PubMed]
93. Yasui T, Miyatani Y, Tomita J, Yamada M, Uemura H, Miura M, et al. Effect of vitamin K2 treatment on carboxylation of osteocalcin in early postmenopausal women. Gynecol Endocrinol. 2006;22(8):455-459. [CrossRef] [PubMed]
94. Kanellakis S, Moschonis G, Tenta R, Schaafsma A, van den Heuvel EG, Papaioannou N, et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int. 2012;90(4):251-262. [CrossRef] [PubMed]
95. Rusu ME, Bigman G, Ryan AS, Popa DS. Investigating the Effects and Mechanisms of Combined Vitamin D and K Supplementation in Postmenopausal Women: An Up-to-Date Comprehensive Review of Clinical Studies. Nutrients. 2024;16(14). [CrossRef] [PubMed]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oleksii S. Nekhlopochyn, Iryna G. Vasylieva, Nataliia G. Chopyk, Vadim V. Verbov, Ievgen V. Cheshuk, Milan V. Vorodi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.