Clinical biomechanics of the spine in three unsolved problems. A brief analytical review




vertebral column, spine, intervertebral discs, degenerative disc disease, biomechanics of the spine, axial load, intradiscal pressure, intra-abdominal pressure


Chronic pathology of the spine, especially its forms, such as degenerative disc disease (DDD), is one of the most common in the human population and a marker for a person. Even though this pathology lacks the burden of mortality, its existence and consequences worsen the quality of life. Hypotheses of the high prevalence of DDD often appeal to a person's upright gait and the function of the spine as a movable vertical support, which means a permanent significant axial load of the intervertebral discs (IVDs). Therefore, finding out the magnitude of such a load, its dependence on the body's position in space, and types of motor activity is an essential practical task of the biomechanics of the spine as a separate interdisciplinary direction of biomedical research.

Despite all the efforts and significant activity during the 70s and 80s of the last century, the central questions of clinical biomechanics of the spine still need to be explored. It is visible from the state of development of three "legendary" problems ‒ elucidation of intradiscal pressure against the background of usual types of physical activity, the role of sitting in the promotion of DDD of the lumbar region, and determination of the role of intra-abdominal pressure in reducing the axial load of this region of the spine. For example, the results of the investigations can state that assessment of intradiscal pressure against the background of human behavioral activity has so far been the focus of a disproportionately small number of works, which, due to the weakness of the accompanying visualization and the technical unreliability of the sensors did not obtain a sufficient empirical base for statistically significant conclusions. Therefore, the urgent task of the future is developing and using a more accurate, reliable, miniature, and durable intradiscal pressure monitoring technique, which would make it possible to evaluate this parameter on large samples of volunteers with conditionally intact IVD and against the background of pathology. In this regard, the assumptions about the role of sitting in the development of DDD of the lumbar spine remain unverified.
Similarly, the research on the phenomenon of intra-abdominal pressure needs to determine under what conditions and mechanisms this factor can affect the magnitude of the axial load on the lumbar spine. Also, constructing more insightful models of the biomechanics of the spine is only possible with expanding ideas about the composition, vascularization, and innervation of the IVD, biology, and pathology of IVD cells. The practical outcome of all these studies is delineation of the most dangerous types of motor activity in the promotion of DDD, which will bring us closer to understanding the drivers of DDD and thus improving the means of preventing and treating this ubiquitous pathology.


1. Medvediev VV, Marushchenko MO, Tsymbaliuk VI. [Degenerative intervertebral disc disease: difficulties in definition of the concept and epidemiology of the phenomenon. Brief communication]. Clinical and Preventive Medicine. 2023;(7):103-12. [CrossRef]

2. Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB Jr, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg. 2021 Apr;15(s1):10-25. [CrossRef] [PubMed] [PubMed Central]

3. Amelot A, Mazel C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. World Neurosurg. 2018 Dec;120:265-273. [CrossRef] [PubMed]

4. Kawaguchi Y. Genetic background of degenerative disc disease in the lumbar spine. Spine Surg Relat Res. 2018 Feb 28;2(2):98-112. [CrossRef] [PubMed] [PubMed Central]

5. Desmoulin GT, Pradhan V, Milner TE. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics. Spine (Phila Pa 1976). 2020 Apr 15;45(8):E457-E464. [CrossRef] [PubMed]

6. Scarcia L, Pileggi M, Camilli A, Romi A, Bartolo A, Giubbolini F, Valente I, Garignano G, D’Argento F, Pedicelli A, Alexandre AM. Degenerative Disc Disease of the Spine: From Anatomy to Pathophysiology and Radiological Appearance, with Morphological and Functional Considerations. J Pers Med. 2022 Nov 1;12(11):1810. [CrossRef] [PubMed] [PubMed Central]

7. Song C, Cai W, Liu F, Cheng K, Guo D, Liu Z. An in-depth analysis of the immunomodulatory mechanisms of intervertebral disc degeneration. JOR Spine. 2022 Dec 8;5(4):e1233. [CrossRef] [PubMed] [PubMed Central]

8. Volz M, Elmasry S, Jackson AR, Travascio F. Computational Modeling Intervertebral Disc Pathophysiology: A Review. Front Physiol. 2022 Jan 13;12:750668. [CrossRef] [PubMed] [PubMed Central]

9. Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med. 2023 Nov 2;12(21):6907. [CrossRef] [PubMed] [PubMed Central]

10. Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases. 2023 Jan 6;11(1):17-29. [CrossRef] [PubMed] [PubMed Central]

11. Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec. 1988 Apr;220(4):337-56. [CrossRef] [PubMed]

12. Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD. Biomechanics of the human intervertebral disc: A review of testing techniques and results. J Mech Behav Biomed Mater. 2017 May;69:420-434. [CrossRef] [PubMed]

13. Koeller W, Meier W, Hartmann F. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Spine (Phila Pa 1976). 1984 Oct;9(7):725-33. [CrossRef] [PubMed]

14. Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine (Phila Pa 1976). 1985 Jan-Feb;10(1):69-71. [CrossRef] [PubMed]

15. Iatridis JC, MacLean JJ, O’Brien M, Stokes IA. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine (Phila Pa 1976). 2007 Jun 15;32(14):1493-7. [CrossRef] [PubMed] [PubMed Central]

16. Yang B, Wendland MF, O’Connell GD. Direct Quantification of Intervertebral Disc Water Content Using MRI. J Magn Reson Imaging. 2020 Oct;52(4):1152-1162. [CrossRef] [PubMed]

17. Fournier DE, Kiser PK, Shoemaker JK, Battié MC, Séguin CA. Vascularization of the human intervertebral disc: A scoping review. JOR Spine. 2020 Sep 15;3(4):e1123. [CrossRef] [PubMed] [PubMed Central]

18. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008 Jan-Feb;8(1):18-44. [CrossRef] [PubMed]

19. Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the Human Intervertebral Disc: A Scoping Review. Pain Med. 2021 Jun 4;22(6):1281-1304. [CrossRef] [PubMed] [PubMed Central]

20. Shayota B, Wong TL, Fru D, David G, Iwanaga J, Loukas M, Tubbs RS. A comprehensive review of the sinuvertebral nerve with clinical applications. Anat Cell Biol. 2019 Jun;52(2):128-133. [CrossRef] [PubMed] [PubMed Central]

21. Kim HS, Wu PH, Jang IT. Narrative Review of Pathophysiology and Endoscopic Management of Basivertebral and Sinuvertebral Neuropathy for Chronic Back Pain. J Korean Neurosurg Soc. 2023 Jul;66(4):344-355. [CrossRef] [PubMed] [PubMed Central]

22. Schmidt H, Shirazi-Adl A. Temporal and spatial variations of pressure within intervertebral disc nuclei. J Mech Behav Biomed Mater. 2018 Mar;79:309-313. [CrossRef] [PubMed]

23. McNally DS, Adams MA. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976). 1992 Jan;17(1):66-73. [CrossRef] [PubMed]

24. Brickley-Parsons D, Glimcher MJ. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine (Phila Pa 1976). 1984 Mar;9(2):148-63. [CrossRef] [PubMed]

25. Medrano-Escalada Y, Plaza-Manzano G, Fernández-de-Las-Peñas C, Valera-Calero JA. Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomography. 2022 Aug 25;8(5):2153-2163. [CrossRef] [PubMed] [PubMed Central]

26. Rohlmann A, Arntz U, Graichen F, Bergmann G. Loads on an internal spinal fixation device during sitting. J Biomech. 2001 Aug;34(8):989-93. [CrossRef] [PubMed]

27. Rohlmannt A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ. Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics. 2001 Jun 20;44(8):781-94. [CrossRef] [PubMed]

28. Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G. Loads on a telemeterized vertebral body replacement measured in two patients. Spine (Phila Pa 1976). 2008 May 15;33(11):1170-9. [CrossRef] [PubMed]

29. Rohlmann A, Zander T, Graichen F, Dreischarf M, Bergmann G. Measured loads on a vertebral body replacement during sitting. Spine J. 2011 Sep;11(9):870-5. [CrossRef] [PubMed]

30. Rohlmann A, Zander T, Graichen F, Bergmann G. Lifting up and laying down a weight causes high spinal loads. J Biomech. 2013 Feb 1;46(3):511-4. [CrossRef] [PubMed]

31. Nachemson A. Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl. 1960;43:1-104. [CrossRef] [PubMed]

32. Nachemson A, Morris J. Lumbar discometry. Lumbar intradiscal pressure measurements in vivo. Lancet. 1963 May 25;1(7291):1140-2. [CrossRef] [PubMed]

33. Nachemson A, Morris JM. In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am. 1964 Jul;46:1077-92. [PubMed]

34. Nachemson A. In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand. 1965;36(4):418-34. [CrossRef] [PubMed]

35. Nachemson A. The effect of forward leaning on lumbar intradiscal pressure. Acta Orthop Scand. 1965;35:314-28. [CrossRef] [PubMed]

36. Nachemson A. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res. 1966 Mar-Apr;45:107-22. [PubMed]

37. Nachemson A, Elfström G. Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand J Rehabil Med Suppl. 1970;1:1-40. [PubMed]

38. Okushima H. [Study on hydrodynamic pressure of lumbar intervertebral disc]. Nihon Geka Hokan. 1970 Mar 15;39(1):45-57. Japanese. [PubMed]

39. Nachemson A, Elfström G. Intravital Measurement of Forces in the Human Spine: Their Clinical Implications for Low Back Pain and Scoliosis. In: Kenedi RM, editor. Perspectives in Biomedical Engineering. Palgrave Macmillan, London. 1973. P. 111–119. [CrossRef]

40. Nachemson A. Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil. 1975 Aug;14(3):129-43. [CrossRef] [PubMed]

41. Nachemson AL. Disc pressure measurements. Spine (Phila Pa 1976). 1981 Jan-Feb;6(1):93-7. [CrossRef] [PubMed]

42. Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am. 1982 Jun;64(5):713-20. [PubMed]

43. Andersson BJ, Ortengren R, Nachemson A, Elfström G. Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scand J Rehabil Med. 1974;6(3):104-14. [PubMed]

44. Andersson BJ, Ortengren R. Lumbar disc pressure and myoelectric back muscle activity during sitting. II. Studies on an office chair. Scand J Rehabil Med. 1974;6(3):115-21. [PubMed]

45. Andersson BJ, Ortengren R. Lumbar disc pressure and myoelectric back muscle activity during sitting. 3. Studies on a wheelchair. Scand J Rehabil Med. 1974;6(3):122-7. [PubMed]

46. Andersson BJ, Ortengren R, Nachemson A, Elfström G. Lumbar disc pressure and myoelectric back muscle activity during sitting. IV. Studies on a car driver’s seat. Scand J Rehabil Med. 1974;6(3):128-33. [PubMed]

47. Harrison DD, Harrison SO, Croft AC, Harrison DE, Troyanovich SJ. Sitting biomechanics part I: review of the literature. J Manipulative Physiol Ther. 1999 Nov-Dec;22(9):594-609. [CrossRef] [PubMed]

48. Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976). 1999 Dec 1;24(23):2468-74. [CrossRef] [PubMed]

49. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976). 1999 Apr 15;24(8):755-62. [CrossRef] [PubMed]

50. Wilke H, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin Biomech (Bristol, Avon). 2001;16 Suppl 1:S111-26. [CrossRef] [PubMed]

51. Polga DJ, Beaubien BP, Kallemeier PM, Schellhas KP, Lew WD, Buttermann GR, Wood KB. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine (Phila Pa 1976). 2004 Jun 15;29(12):1320-4. [CrossRef] [PubMed]

52. Takahashi I, Kikuchi S, Sato K, Sato N. Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine (Phila Pa 1976). 2006 Jan 1;31(1):18-23. [CrossRef] [PubMed]

53. Dreischarf M, Shirazi-Adl A, Arjmand N, Rohlmann A, Schmidt H. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J Biomech. 2016 Apr 11;49(6):833-845. [CrossRef] [PubMed]

54. Claus A, Hides J, Moseley GL, Hodges P. Sitting versus standing: does the intradiscal pressure cause disc degeneration or low back pain? J Electromyogr Kinesiol. 2008 Aug;18(4):550-8. [CrossRef] [PubMed]

55. Li JQ, Kwong WH, Chan YL, Kawabata M. Comparison of In Vivo Intradiscal Pressure between Sitting and Standing in Human Lumbar Spine: A Systematic Review and Meta-Analysis. Life (Basel). 2022 Mar 20;12(3):457. [CrossRef] [PubMed] [PubMed Central]

56. Clean and jerk [Internet]. Wikipedia; 2023.

57. Schäfer R, Trompeter K, Fett D, Heinrich K, Funken J, Willwacher S, Brüggemann GP, Platen P. The mechanical loading of the spine in physical activities. Eur Spine J. 2023 Sep;32(9):2991-3001. [CrossRef] [PubMed]

58. Tang R, Gungor C, Sesek RF, Foreman KB, Gallagher S, Davis GA. Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings. Eur Spine J. 2016 Dec;25(12):4116-4131. [CrossRef] [PubMed]

59. Granhed H, Jonson R, Hansson T. The loads on the lumbar spine during extreme weight lifting. Spine (Phila Pa 1976). 1987 Mar;12(2):146-9. [CrossRef] [PubMed]

60. Progression of the deadlift world record [Internet]. Wikipedia; 2023.

61. Deadlift [Internet]. Wikipedia; 2023.

62. Orders of magnitude (pressure) [Internet]. Wikipedia; 2023.

63. Bartelink DL. The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. J Bone Joint Surg Br. 1957 Nov;39-B(4):718-25. [CrossRef] [PubMed]

64. Eie N. Recent Measurements of the Intra-Abdominal Pressure. In: Kenedi RM, editor. Perspectives in Biomedical Engineering. Palgrave Macmillan, London. 1973. P. 121-122. [CrossRef]

65. Aspden RM. Intra-abdominal pressure and its role in spinal mechanics. Clin Biomech (Bristol, Avon). 1987 Aug;2(3):168-74. [CrossRef] [PubMed]

66. Bearn JG. The significance of the activity of the abdominal muscles in weight lifting. Acta Anat (Basel). 1961;45:83-9. [CrossRef] [PubMed]

67. Harman EA, Rosenstein RM, Frykman PN, Nigro GA. Effects of a belt on intra-abdominal pressure during weight lifting. Med Sci Sports Exerc. 1989 Apr;21(2):186-90. [PubMed]

68. Daggfeldt K, Thorstensson A. The role of intra-abdominal pressure in spinal unloading. J Biomech. 1997 Nov-Dec;30(11-12):1149-55. [CrossRef] [PubMed]

69. Belavý DL, Armbrecht G, Felsenberg D. Real-time ultrasound measures of lumbar erector spinae and multifidus: reliability and comparison to magnetic resonance imaging. Physiol Meas. 2015 Nov;36(11):2285-99. [CrossRef] [PubMed]

70. De Carvalho D, Greene R, Swab M, Godwin M. Does objectively measured prolonged standing for desk work result in lower ratings of perceived low back pain than sitting? A systematic review and meta-analysis. Work. 2020;67(2):431-440. [CrossRef] [PubMed]

71. Beach TA, Parkinson RJ, Stothart JP, Callaghan JP. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine. Spine J. 2005 Mar-Apr;5(2):145-54. [CrossRef] [PubMed]

72. Hay O, Dar G, Abbas J, Stein D, May H, Masharawi Y, Peled N, Hershkovitz I. The Lumbar Lordosis in Males and Females, Revisited. PloS One. 2015 Aug 24;10(8):e0133685. [CrossRef] [PubMed] [PubMed Central]

73. Keith A. Hunterian Lectures ON MAN’S POSTURE: ITS EVOLUTION AND DISORDERS: Given at the Royal College of Surgeons of England. Br Med J. 1923 Apr 7;1(3249):587-90. [CrossRef] [PubMed] [PubMed Central]

74. Cresswell AG, Thorstensson A. Changes in intra-abdominal pressure, trunk muscle activation and force during isokinetic lifting and lowering. Eur J Appl Physiol Occup Physiol. 1994;68(4):315-21. [CrossRef] [PubMed]

75. Cobb WS, Burns JM, Kercher KW, Matthews BD, James Norton H, Todd Heniford B. Normal intraabdominal pressure in healthy adults. J Surg Res. 2005 Dec;129(2):231-5. [CrossRef] [PubMed]

76. Harman EA, Frykman PN, Clagett ER, Kraemer WJ. Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med Sci Sports Exerc. 1988 Apr;20(2):195-201. [CrossRef] [PubMed]

77. Blazek D, Stastny P, Maszczyk A, Krawczyk M, Matykiewicz P, Petr M. Systematic review of intra-abdominal and intrathoracic pressures initiated by the Valsalva manoeuvre during high-intensity resistance exercises. Biol Sport. 2019 Dec;36(4):373-386. [CrossRef] [PubMed] [PubMed Central]

78. McGill SM, Norman RW. Reassessment of the role of intra-abdominal pressure in spinal compression. Ergonomics. 1987 Nov;30(11):1565-88. [CrossRef] [PubMed]

79. Lander JE, Simonton RL, Giacobbe JK. The effectiveness of weight-belts during the squat exercise. Med Sci Sports Exerc. 1990 Feb;22(1):117-26. [PubMed]

80. Lander JE, Hundley JR, Simonton RL. The effectiveness of weight-belts during multiple repetitions of the squat exercise. Med Sci Sports Exerc. 1992 May;24(5):603-9. [PubMed]

81. Cholewicki J, Juluru K, McGill SM. Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech. 1999 Jan;32(1):13-7. [CrossRef] [PubMed]

82. Cresswell AG. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol Occup Physiol. 1993;66(4):315-20. [CrossRef] [PubMed]

83. Cresswell AG, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain Res. 1994;98(2):336-41. [CrossRef] [PubMed]

84. Hodges PW, Cresswell AG, Daggfeldt K, Thorstensson A. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J Biomech. 2001 Mar;34(3):347-53. [CrossRef] [PubMed]

85. Cresswell AG, Grundström H, Thorstensson A. Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand. 1992 Apr;144(4):409-18. [CrossRef] [PubMed]

86. Hemborg B, Moritz U, Löwing H. Intra-abdominal pressure and trunk muscle activity during lifting. IV. The causal factors of the intra-abdominal pressure rise. Scand J Rehabil Med. 1985;17(1):25-38. [PubMed]

87. Calisse J, Rohlmann A, Bergmann G. Estimation of trunk muscle forces using the finite element method and in vivo loads measured by telemeterized internal spinal fixation devices. J Biomech. 1999 Jul;32(7):727-31. [CrossRef] [PubMed]

88. Daggfeldt K, Thorstensson A. The mechanics of back-extensor torque production about the lumbar spine. J Biomech. 2003 Jun;36(6):815-25. [CrossRef] [PubMed]

89. Arjmand N, Shirazi-Adl A. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks. Eur Spine J. 2006 Aug;15(8):1265-75. [CrossRef] [PubMed] [PubMed Central]

90. Park WM, Wang S, Kim YH, Wood KB, Sim JA, Li G. Effect of the intra-abdominal pressure and the center of segmental body mass on the lumbar spine mechanics – a computational parametric study. J Biomech Eng. 2012 Jan;134(1):011009. [CrossRef] [PubMed] [PubMed Central]

91. Kim HK, Zhang Y. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim. Ergonomics. 2017 Apr;60(4):563-576. [CrossRef] [PubMed]

92. Raabe ME, Chaudhari AMW. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation. J Biomech. 2016 May 3;49(7):1238-1243. [CrossRef] [PubMed] [PubMed Central]

93. Beaucage-Gauvreau E, Robertson WSP, Brandon SCE, Fraser R, Freeman BJC, Graham RB, Thewlis D, Jones CF. Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput Methods Biomech Biomed Engin. 2019 Apr;22(5):451-464. [CrossRef] [PubMed]

94. Ghezelbash F, Shirazi-Adl A, El Ouaaid Z, Plamondon A, Arjmand N. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting. J Biomech. 2020 Mar 26;102:109550. [CrossRef] [PubMed]

95. Wang K, Wang L, Deng Z, Jiang C, Niu W, Zhang M. Influence of passive elements on prediction of intradiscal pressure and muscle activation in lumbar musculoskeletal models. Comput Methods Programs Biomed. 2019 Aug;177:39-46. [CrossRef] [PubMed]

96. Mörl F, Günther M, Riede JM, Hammer M, Schmitt S. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Biomech Model Mechanobiol. 2020 Dec;19(6):2015-2047. [CrossRef] [PubMed]

97. Guo J, Guo W, Ren G. Embodiment of intra-abdominal pressure in a flexible multibody model of the trunk and the spinal unloading effects during static lifting tasks. Biomech Model Mechanobiol. 2021 Aug;20(4):1599-1626. [CrossRef] [PubMed]

98. Zhou M, Lim S, O’Connell GD. A Robust Multiscale and Multiphasic Structure-Based Modeling Framework for the Intervertebral Disc. Front Bioeng Biotechnol. 2021 Jun 7;9:685799. [CrossRef] [PubMed] [PubMed Central]

99. Lerchl T, El Husseini M, Bayat A, Sekuboyina A, Hermann L, Nispel K, Baum T, Löffler MT, Senner V, Kirschke JS. Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT. Front Bioeng Biotechnol. 2022 Jul 11;10:862804. [CrossRef] [PubMed] [PubMed Central]

100. Lerchl T, Nispel K, Baum T, Bodden J, Senner V, Kirschke JS. Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges. Bioengineering (Basel). 2023 Feb 3;10(2):202. [CrossRef] [PubMed] [PubMed Central]

101. Nispel K, Lerchl T, Senner V, Kirschke JS. Recent Advances in Coupled MBS and FEM Models of the Spine-A Review. Bioengineering (Basel). 2023 Mar 1;10(3):315. [CrossRef] [PubMed] [PubMed Central]

102. Xu C, Xi Z, Fang Z, Zhang X, Wang N, Li J, Liu Y. Annulus Calibration Increases the Computational Accuracy of the Lumbar Finite Element Model. Global Spine J. 2023 Oct;13(8):2310-2318. [CrossRef] [PubMed] [PubMed Central]

103. Zhu T, Ai T, Zhang W, Li T, Li X. Segmental quantitative MR imaging analysis of diurnal variation of water content in the lumbar intervertebral discs. Korean J Radiol. 2015 Jan-Feb;16(1):139-45. [CrossRef] [PubMed] [PubMed Central]

104. Liu C, Wang J, Hou B, Li Y, Morelli JN, Zhang P, Ran J, Li X. Diurnal Variation in Hydration of the Cervical Intervertebral Disc Assessed Using T2 Mapping of Magnetic Resonance Imaging. Korean J Radiol. 2022 Jun;23(6):638-648. [CrossRef] [PubMed] [PubMed Central]

105. Tyrrell AR, Reilly T, Troup JD. Circadian variation in stature and the effects of spinal loading. Spine (Phila Pa 1976). 1985 Mar;10(2):161-4. [CrossRef] [PubMed]

106. Leatt P, Reilly T, Troup JG. Spinal loading during circuit weight-training and running. Br J Sports Med. 1986 Sep;20(3):119-24. [CrossRef] [PubMed] [PubMed Central]

107. Adams MA, Dolan P, Hutton WC. Diurnal variations in the stresses on the lumbar spine. Spine (Phila Pa 1976). 1987 Mar;12(2):130-7. [CrossRef] [PubMed]

108. Dolan P, Adams MA. Recent advances in lumbar spinal mechanics and their significance for modelling. Clin Biomech (Bristol, Avon). 2001;16 Suppl 1:S8-S16. [CrossRef] [PubMed]

109. Snook SH, Webster BS, McGorry RW, Fogleman MT, McCann KB. The reduction of chronic nonspecific low back pain through the control of early morning lumbar flexion. A randomized controlled trial. Spine (Phila Pa 1976). 1998 Dec 1;23(23):2601-7. [CrossRef] [PubMed]

110. Snook SH, Webster BS, McGorry RW. The reduction of chronic, nonspecific low back pain through the control of early morning lumbar flexion: 3-year follow-up. J Occup Rehabil. 2002 Mar;12(1):13-9. [CrossRef] [PubMed]

111. Vergroesen PP, van der Veen AJ, van Royen BJ, Kingma I, Smit TH. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J. 2014 Nov;23(11):2359-68. [CrossRef] [PubMed]



How to Cite

Medvediev, V. V., & Marushchenko, M. O. (2024). Clinical biomechanics of the spine in three unsolved problems. A brief analytical review. Ukrainian Neurosurgical Journal, 30(1), 3–12.



Review articles