Peripheral nerve injury: molecular pathophysiology and prospects for restorative treatment by means of cell transplantation: a literature review
DOI:
https://doi.org/10.25305/unj.288785Keywords:
peripheral nerve injury, axonotomy, apoptosis, nerve regeneration, plasticity of neural networks, mesenchymal stem cellsAbstract
Peripheral nerve injury (PNI) is a fairly common pathology—PNI accounts for 1-5% of all peacetime injuries and 12% of all combat injuries. This injury leads to disability, the development of chronic pain syndromes and a significant deterioration in the quality of life of the victims. Unfortunately, at present, in the case of the most frequent type of combat trauma — damage to the limbs — PNI treatment is mostly done last, "on the residual principle." Modern means of surgical and conservative treatment of PNI do not provide complete restoration of lost functions, therefore, restorative treatment of PNI is an urgent biomedical problem. The article reviews the currently known molecular mechanisms of various stages of PNI, as well as the plasticity of the central parts of the nervous system on the background of this injury. The main reasons for the limitation of autogenous recovery of functions after a sustained PNI are described — the absence of a relevant spatial organization of regrowth of axons in the area of PNI; post-traumatic death of neurons of spinal nodes and central parts of the nervous system; failure of plastic reconstruction of brain and spinal cord neural networks; irreversibility of atrophy of denervated muscles. Based on this, it was established that the means of restorative treatment of PNI should touch not only the epicenter of PNI, but also the central parts of the nervous system and denervated muscles. Mesenchymal stem cells (MSCs) are well-known means of a positive influence on the the restorative process in the focus of PNI, as well as a source of supportive influence/ strengthening effect and an amplifier of the plasticity of brain neural networks, which makes these cells a promising element of bioengineering treatment of PNI. The effect of MSCs on the central parts of the nervous system in case of PNI remains the least studied. Data from the literature indicate that such an effect can provide support for secondarily affected neurons and stimulate the plastic reorganization of brain networks, i.e., in general, significantly improve the results of restorative treatment of PNI.
References
1. Lavorato A, Aruta G, De Marco R, Zeppa P, Titolo P, Colonna MR, Galeano M, Costa AL, Vincitorio F, Garbossa D, Battiston B. Traumatic peripheral nerve injuries: a classification proposal. J Orthop Traumatol. 2023 May 10;24(1):20. [CrossRef] [PubMed] [PubMed Central]
2. Kamble N, Shukla D, Bhat D. Peripheral Nerve Injuries: Electrophysiology for the Neurosurgeon. Neurol India. 2019 Nov-Dec;67(6):1419-1422. [CrossRef] [PubMed]
3. Merchant S, Yeoh S, Mahan MA, Hsu EW. Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve. J Clin Med. 2022 May 27;11(11):3036. [CrossRef] [PubMed] [PubMed Central]
4. Garozzo D. Peripheral nerve injuries and their surgical treatment: New perspectives on a changing scenario. Neurol India. 2019 Jan-Feb;67(Supplement):S20-S22. [CrossRef] [PubMed]
5. Yang H, Dong Y, Wang Z, Lai J, Yao C, Zhou H, Alhaskawi A, Hasan Abdullah Ezzi S, Kota VG, Hasan Abdulla Hasan Abdulla M, Lu H. Traumatic neuromas of peripheral nerves: Diagnosis, management and future perspectives. Front Neurol. 2023 Jan 11;13:1039529. [CrossRef] [PubMed] [PubMed Central]
6. Mushtaq S, Hina S, Maqbool H, Ahmed A, Nazim M, Hussain E, Mussab RM, Kumar B. Frequency of Peripheral Nerve Injury in Trauma in Emergency Settings. Cureus. 2021 Mar 30;13(3):e14195. [CrossRef] [PubMed] [PubMed Central]
7. Dong S, Feng S, Chen Y, Chen M, Yang Y, Zhang J, Li H, Li X, Ji L, Yang X, Hao Y, Chen J, Wo Y. Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration in vivo. Front Chem. 2021 Jul 14;9:676928. [CrossRef] [PubMed] [PubMed Central]
8. Lopez S, Bittner GD, Treviño RC. Rapid and effective fusion repair of severed digital nerves using neurorrhaphy and bioengineered solutions including polyethylene glycol: A case report. Front Cell Neurosci. 2023 Jan 19;16:1087961. [CrossRef] [PubMed] [PubMed Central]
9. Khalifeh JM, Dibble CF, Dy CJ, Ray WZ. Cost-Effectiveness Analysis of Combined Dual Motor Nerve Transfers versus Alternative Surgical and Nonsurgical Management Strategies to Restore Shoulder Function Following Upper Brachial Plexus Injury. Neurosurgery. 2019 Feb 1;84(2):362-377. [CrossRef] [PubMed]
10. Karsy M, Wilde H, Rolston JD. In Reply: Evaluating the Landscape of Clinical Research in Neurosurgery. Neurosurgery. 2019 Oct 1;85(4):E795. [CrossRef] [PubMed]
11. Raizman NM, Endress RD, Styron JF, Emont SL, Cao Z, Park LI, Greenberg JA. Procedure Costs of Peripheral Nerve Graft Reconstruction. Plast Reconstr Surg Glob Open. 2023 Apr 10;11(4):e4908. [CrossRef] [PubMed] [PubMed Central]
12. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-Art Techniques in Treating Peripheral Nerve Injury. Plast Reconstr Surg. 2018 Mar;141(3):702-710. [CrossRef] [PubMed]
13. Kim SJ, Kwon YM, Ahn SM, Lee JH, Lee CH. Epidemiology of upper extremity peripheral nerve injury in South Korea, 2008 to 2018. Medicine (Baltimore). 2022 Dec 2;101(48):e31655. [CrossRef] [PubMed] [PubMed Central]
14. Murphy RNA, de Schoulepnikoff C, Chen JHC, Columb MO, Bedford J, Wong JK, Reid AJ. The incidence and management of peripheral nerve injury in England (2005-2020). J Plast Reconstr Aesthet Surg. 2023 May;80:75-85. [CrossRef] [PubMed]
15. Padovano WM, Dengler J, Patterson MM, Yee A, Snyder-Warwick AK, Wood MD, Moore AM, Mackinnon SE. Incidence of Nerve Injury After Extremity Trauma in the United States. Hand (N Y). 2022 Jul;17(4):615-623. [CrossRef] [PubMed] [PubMed Central]
16. Rasulić L, Puzović V, Rotim K, Jovanović M, Samardžić M, Živković B, Savić A. The epidemiology of forearm nerve injuries--a retrospective study. Acta Clin Croat. 2015 Mar;54(1):19-24. [PubMed]
17. Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Mater Sci Eng C Mater Biol Appl. 2016 Aug 1;65:425-32. [CrossRef] [PubMed]
18. Tsymbaliuk VI, Chebotaryova LL, Dubyna GI. [Electrophysiological diagnostics of the closed injury brachial plexus in a combination with craniocereberal trauma]. Ukrainian Neurosurgical Journal. 2004;(4):65-8. Ukrainian. https://theunj.org/article/view/145018
19. Tsymbaliuk VI, Medvediev VV, Ivanchov PV, Molotkovets VY, Chaikovsky YB, Korsak AV. [Electrical welding technology in restoring the integrity of the injured peripheral nerve: review of literature and own experimental research]. Ukrainian Neurosurgical Journal. 2020;26(2):24-33. Ukrainian. [CrossRef]
20. Tsymbaliuk VI, Strafun SS, Haiko OH, Gaiovych VV. [The concept of limb function recovery in traumatic injury of peripheral nerves]. Ukrainian Neurosurgical Journal. 2016;(3):48-54. [CrossRef]
21. Shvets AV, Horishna OV, Deputat YM, Rychka OV, Zhaldak AY, Kikh AY. Prognostic assessment of the need for medical rehabilitation among military officers of the Armed Forces of Ukraine based on the structure of their combat trauma. Ukrainian Journal of Military Medicine. 2022;3(3):110-7. Ukrainian. [CrossRef]
22. Tsymbaliuk V, Luzan B, Tsymbaliuk I. [Diagnostics and Treatment of Traumatic Injuries of Peripheral Nerves in Combat Conditions]. TRAUMA. 2015;16(3):13-8. Ukrainian. [CrossRef]
23. Molotkovets VY, Medvediev VV, Korsak AV, Chaikovsky YB, Marynsky GS, Tsymbaliuk VI. Restoration of the integrity of a transected peripheral nerve with the use of an electric welding technology. Neurophysiology. 2020 Jan;52(1):31-42. [CrossRef]
24. Pereira CT, Hill EE, Stasyuk A, Parikh N, Dhillon J, Wang A, Li A. Molecular Basis of Surgical Coaptation Techniques in Peripheral Nerve Injuries. J Clin Med. 2023 Feb 16;12(4):1555. [CrossRef] [PubMed] [PubMed Central]
25. Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci. 2020 Nov 17;21(22):8652. [CrossRef] [PubMed] [PubMed Central]
26. Eleftheriadou D, Berg M, Phillips JB, Shipley RJ. A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration. Biotechnol Bioeng. 2022 Jul;119(7):1980-1996. [CrossRef] [PubMed] [PubMed Central]
27. Chaudhry S, Ipaktchi KR, Ignatiuk A. Updates on and Controversies Related to Management of Radial Nerve Injuries. J Am Acad Orthop Surg. 2019 Mar 15;27(6):e280-e284. [CrossRef] [PubMed]
28. Narayan SK, Arumugam M, Chittoria R. Outcome of human peripheral nerve repair interventions using conduits: a systematic review. J Neurol Sci. 2019 Jan 15;396:18-24. [CrossRef] [PubMed]
29. Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res. 2019 Aug;14(8):1343-1351. [CrossRef] [PubMed] [PubMed Central]
30. Hill JR, Lanier ST, Rolf L, James AS, Brogan DM, Dy CJ. Trends in Brachial Plexus Surgery: Characterizing Contemporary Practices for Exploration of Supraclavicular Plexus. Hand (N Y). 2023 Jan;18(1_suppl):14S-21S. [CrossRef] [PubMed] [PubMed Central]
31. Eren A, Atalar H, Seymen CM, Alpaslan Pınarlı F, Take Kaplanoglu G, Turanlı S. Sutureless approach with vein grafts and mesenchymal stem cells in primary nerve repair: Functional and immunohistological results. Microsurgery. 2018 Oct;38(7):780-789. [CrossRef] [PubMed]
32. Hejazian LB, Akbarnejad Z, Moghani Ghoroghi F, Esmaeilzade B, Chaibakhsh S. Augmenting Peripheral Nerve Regeneration Using Hair Follicle Stem Cells in Rats. Basic Clin Neurosci. 2022 Jan-Feb;13(1):57-70. [CrossRef] [PubMed] [PubMed Central]
33. Ren T, Faust A, van der Merwe Y, Xiao B, Johnson S, Kandakatla A, Gorantla VS, Badylak SF, Washington KM, Steketee MB. Fetal extracellular matrix nerve wraps locally improve peripheral nerve remodeling after complete transection and direct repair in rat. Sci Rep. 2018 Mar 14;8(1):4474. [CrossRef] [PubMed] [PubMed Central]
34. Scott BB, Wu RC, Nietlispach V, Randolph MA, Redmond RW. A Photosealed Cap Prevents Disorganized Axonal Regeneration and Neuroma following Nerve Transection in Rats. Plast Reconstr Surg Glob Open. 2022 Mar 7;10(3):e4168. [CrossRef] [PubMed] [PubMed Central]
35. Yan Y, Hunter DA, Schellhardt L, Ee X, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts. Muscle Nerve. 2018 Feb;57(2):260-267. [CrossRef] [PubMed] [PubMed Central]
36. Wang C, Jia Y, Yang W, Zhang C, Zhang K, Chai Y. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res A. 2018 Jul;106(7):2070-2077. [CrossRef] [PubMed]
37. Goncharuk O, Savosko S, Petriv T, Tatarchuk M, Medvediev V, Tsymbaliuk V. Epineurial sutures, polyethylene glycol hydrogel and fibrin glue in the sciatic nerve repair in rats: functional and morphological assessments in experiment. Georgian Med News. 2020 Dec;(309):124-131. [PubMed]
38. Goncharuk-OO, Savosko-SI, Petriv-TI, Medvediev-VV, Tsymbaliuk-VI. Morphometric Study of Rat Sciatic Nerve Recovery after Three Nerve Repair Techniques: Epineural Suture, Polyethylene Glycol Hydrogel and Fibrin Sealant. International Journal of Morphology. 2021 June;39(3):677-82. [CrossRef]
39. Soucy JR, Shirzaei Sani E, Portillo Lara R, Diaz D, Dias F, Weiss AS, Koppes AN, Koppes RA, Annabi N. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. Tissue Eng Part A. 2018 Sep;24(17-18):1393-1405. [CrossRef] [PubMed] [PubMed Central]
40. Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional Biomedical Adhesives. Adv Healthc Mater. 2019 Jun;8(11):e1801568. [CrossRef] [PubMed] [PubMed Central]
41. Wieringa PA, Gonçalves de Pinho AR, Micera S, van Wezel RJA, Moroni L. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Adv Healthc Mater. 2018 Apr;7(8):e1701164. [CrossRef] [PubMed]
42. Riccio M, Marchesini A, Pugliese P, De Francesco F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol. 2019 Apr;234(4):3362-3375. [CrossRef] [PubMed]
43. Zhao XF, Huffman LD, Hafner H, Athaiya M, Finneran MC, Kalinski AL, Kohen R, Flynn C, Passino R, Johnson CN, Kohrman D, Kawaguchi R, Yang LJS, Twiss JL, Geschwind DH, Corfas G, Giger RJ. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. Elife. 2022 Dec 14;11:e80881. [CrossRef] [PubMed] [PubMed Central]
44. Waller A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres. Edinb Med Surg J. 1851 Oct 1;76(189):369-376. [PubMed] [PubMed Central]
45. Akram R, Anwar H, Javed MS, Rasul A, Imran A, Malik SA, Raza C, Khan IU, Sajid F, Iman T, Sun T, Han HS, Hussain G. Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines. 2022 Dec 8;10(12):3186. [CrossRef] [PubMed] [PubMed Central]
46. Lin YF, Xie Z, Zhou J, Yin G, Lin HD. Differential gene and protein expression between rat tibial nerve and common peroneal nerve during Wallerian degeneration. Neural Regen Res. 2019 Dec;14(12):2183-2191. [CrossRef] [PubMed] [PubMed Central]
47. Geden MJ, Romero SE, Deshmukh M. Apoptosis versus axon pruning: Molecular intersection of two distinct pathways for axon degeneration. Neurosci Res. 2019 Feb;139:3-8. [CrossRef] [PubMed] [PubMed Central]
48. Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol. 2018 Oct;78(10):978-990. [CrossRef] [PubMed]
49. Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD+ point of view. Neurosci Res. 2019 Feb;139:9-20. [CrossRef] [PubMed] [PubMed Central]
50. Doron-Mandel E, Fainzilber M, Terenzio M. Growth control mechanisms in neuronal regeneration. FEBS Lett. 2015 Jun 22;589(14):1669-77. [CrossRef] [PubMed]
51. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019 Feb;173:102-121. [CrossRef] [PubMed] [PubMed Central]
52. Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, Deng J, Zhang H, Liu J, Wang X, Zuo D, Guo J. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation. 2021 Oct 15;18(1):234. [CrossRef] [PubMed] [PubMed Central]
53. Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019 Aug;14(8):1335-1342. [CrossRef] [PubMed] [PubMed Central]
54. Behl T, Makkar R, Sehgal A, Singh S, Sharma N, Zengin G, Bungau S, Andronie-Cioara FL, Munteanu MA, Brisc MC, Uivarosan D, Brisc C. Current Trends in Neurodegeneration: Cross Talks between Oxidative Stress, Cell Death, and Inflammation. Int J Mol Sci. 2021 Jul 11;22(14):7432. [CrossRef] [PubMed] [PubMed Central]
55. Wang X, Yang C, Wang X, Miao J, Chen W, Zhou Y, Xu Y, An Y, Cheng A, Ye W, Chen M, Song D, Yuan X, Wang J, Qian P, Wu AR, Zhang ZY, Liu K. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron. 2023 Jan 18;111(2):236-255.e7. [CrossRef] [PubMed] [PubMed Central]
56. Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front Cell Neurosci. 2019 Mar 20;13:93. [CrossRef] [PubMed] [PubMed Central]
57. Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci. 2019 Feb 11;13:33. [CrossRef] [PubMed] [PubMed Central]
58. Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol. 2022 Oct 10;10:999322. [CrossRef] [PubMed] [PubMed Central]
59. Fawcett JW, Verhaagen J. Intrinsic Determinants of Axon Regeneration. Dev Neurobiol. 2018 Oct;78(10):890-897. [CrossRef] [PubMed]
60. Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol. 2018 Oct;78(10):898-925. [CrossRef] [PubMed]
61. Wang Z, Zhang D, Yi XZ, Zhao Y, Yu A. Effects of regenerative peripheral nerve interface on dorsal root ganglia neurons following peripheral axotomy. Front Neurosci. 2022 Sep 7;16:914344. [CrossRef] [PubMed] [PubMed Central]
62. Korsak A, Likhodiievskyi V, Sokurenko L, Chaikovsky Y. New Method of Injured Nerve Repair. J Neurol Surg A Cent Eur Neurosurg. 2018 Jul;79(4):291-295. [CrossRef] [PubMed]
63. Zhang H, Li Y, Yang Q, Liu XG, Dougherty PM. Morphological and Physiological Plasticity of Spinal Lamina II GABA Neurons Is Induced by Sciatic Nerve Chronic Constriction Injury in Mice. Front Cell Neurosci. 2018 May 24;12:143. [CrossRef] [PubMed] [PubMed Central]
64. Rasulić L, Đjurašković S, Lakićević N, Lepić M, Savić A, Grujić J, Mićić A, Radojević S, Córdoba-Mosqueda ME, Visani J, Puzović V, Kovačević V, Vitošević F, Mandić-Rajčević S, Knezevic S. Etiological and epidemiological characteristics of surgically treated radial nerve lesions: A 20-year single-center experience. Front Surg. 2022 Sep 20;9:942755. [CrossRef] [PubMed] [PubMed Central]
65. Pravoverov K, Whiting K, Thapa S, Bushong T, Trang K, Lein PJ, Chandrasekaran V. MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cell Mol Neurobiol. 2019 Oct;39(7):917-934. [CrossRef] [PubMed] [PubMed Central]
66. Figueiredo GSL, Fernandes M, Atti VN, Valente SG, Roth F, Nakachima LR, Santos JBGD, Fernandes CH. Use of aerobic treadmill exercises on nerve regeneration after sciatic nerve injury in spontaneously hypertensive rats. Acta Cir Bras. 2022 Oct 28;37(8):e370804. [CrossRef] [PubMed] [PubMed Central]
67. Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci. 2023 Mar 17;24(6):5736. [CrossRef] [PubMed] [PubMed Central]
68. Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Yu W, Ding Z. Alteration of the cortical morphology in classical trigeminal neuralgia: voxel-, deformation-, and surface-based analysis. J Headache Pain. 2023 Feb 21;24(1):17. [CrossRef] [PubMed] [PubMed Central]
69. Li C, Liu SY, Pi W, Zhang PX. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021 Aug;16(8):1518-1523. [CrossRef] [PubMed] [PubMed Central]
70. Chao TH, Chen JH, Yen CT. Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol Brain. 2018 Oct 1;11(1):55. [CrossRef] [PubMed] [PubMed Central]
71. Han JJ, Noh TS, Suh MW, Kim SH, Kim DH, Kim SJ, Oh SH. Synaptic Remodeling of the Auditory Cortex Following Bilateral Blindness: Evidence of Cross-modal Plasticity. Exp Neurobiol. 2022 Oct 31;31(5):299-306. [CrossRef] [PubMed] [PubMed Central]
72. Fenrich K, Gordon T. Canadian Association of Neuroscience review: axonal regeneration in the peripheral and central nervous systems--current issues and advances. Can J Neurol Sci. 2004 May;31(2):142-56. [CrossRef] [PubMed]
73. Purves D, Hadley RD, Voyvodic JT. Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice. J Neurosci. 1986 Apr;6(4):1051-60. [CrossRef] [PubMed] [PubMed Central]
74. Yuan YS, Xu HL, Liu ZD, Kou YH, Jin B, Zhang PX. Brain functional remodeling caused by sciatic nerve transposition repair in rats identified by multiple-model resting-state blood oxygenation level-dependent functional magnetic resonance imaging analysis. Neural Regen Res. 2022 Feb;17(2):418-426. [CrossRef] [PubMed] [PubMed Central]
75. Refaaq FM, Chen X, Pang SW. Effects of topographical guidance cues on osteoblast cell migration. Sci Rep. 2020 Nov 17;10(1):20003. [CrossRef] [PubMed] [PubMed Central]
76. Madl CM, Heilshorn SC. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu Rev Biomed Eng. 2018 Jun 4;20:21-47. [CrossRef] [PubMed] [PubMed Central]
77. Rashidiani-Rashidabadi A, Heidari MH, Sajadi E, Hejazi F, Fathabady FF, Sadeghi Y, Aliaghaei A, Raoofi A, Abdollahifar MA, Farahni RM. Sciatic nerve injury alters the spatial arrangement of neurons and glial cells in the anterior horn of the spinal cord. Neural Regen Res. 2019 Oct;14(10):1833-1840. [CrossRef] [PubMed] [PubMed Central]
78. Campos RMP, Barbosa-Silva MC, Ribeiro-Resende VT. Comparison of effect of crush or transection peripheral nerve lesion on lumbar spinal cord synaptic plasticity and microglial dynamics. IBRO Neurosci Rep. 2021 May 16;10:225-235. [CrossRef] [PubMed] [PubMed Central]
79. Yuan YS, Niu SP, Yu YL, Zhang PX, Yin XF, Han N, Zhang YJ, Zhang DY, Xu HL, Kou YH, Jiang BG. Reinnervation of spinal cord anterior horn cells after median nerve repair using transposition with other nerves. Neural Regen Res. 2019 Apr;14(4):699-705. [CrossRef] [PubMed] [PubMed Central]
80. Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol. 2022 Apr 26;13:831819. [CrossRef] [PubMed] [PubMed Central]
81. Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci. 2020 Apr 30;13:68. [CrossRef] [PubMed] [PubMed Central]
82. De Luca C, Virtuoso A, Korai SA, Cirillo R, Gargano F, Papa M, Cirillo G. Altered Spinal Homeostasis and Maladaptive Plasticity in GFAP Null Mice Following Peripheral Nerve Injury. Cells. 2022 Apr 5;11(7):1224. [CrossRef] [PubMed] [PubMed Central]
83. Kroth A, Mackedanz V, Matté C, Wyse ATS, Ribeiro MFM, Partata WA. Effect of Sciatic Nerve Transection on acetylcholinesterase activity in spinal cord and skeletal muscles of the bullfrog Lithobates catesbeianus. Braz J Biol. 2018 May;78(2):217-223. [CrossRef] [PubMed]
84. Xing XX, Hua XY, Zheng MX, Ma ZZ, Huo BB, Wu JJ, Ma SJ, Ma J, Xu JG. Intra and inter: Alterations in functional brain resting-state networks after peripheral nerve injury. Brain Behav. 2020 Sep;10(9):e01747. [CrossRef] [PubMed] [PubMed Central]
85. Goncharuk O, Savosko S, Tykhomyrov A, Guzyk M, Medvediev V, Tsymbaliuk V, Chaikovsky Y. Matrix Metalloproteinase-9 is Involved in the Fibrotic Process in Denervated Muscles after Sciatic Nerve Trauma and Recovery. J Neurol Surg A Cent Eur Neurosurg. 2023 Mar;84(2):116-122. [CrossRef] [PubMed]
86. Goncharuk O, Savosko S, Petriv T, Medvediev V, Tsymbaliuk V. Quantitative histological assessment of skeletal muscle hypotrophy after neurotomy and sciatic nerve repair in rats. Georgian Med News. 2021 Apr;(313):169-172. [PubMed]
87. Petriv TI, Tsymbalyuk YV, Potapov OO, Kvasnitsʹkyy MV, Honcharuk OO, Tatarchuk MM. [Stem cell technology in peripheral nerve restoration]. Eastern Ukrainian Medical Journal. 2020;8(2):210-29. Ukrainian. [CrossRef]
88. Rhode SC, Beier JP, Ruhl T. Adipose tissue stem cells in peripheral nerve regeneration-In vitro and in vivo. J Neurosci Res. 2021 Feb;99(2):545-560. [CrossRef] [PubMed]
89. Supra R, Agrawal DK. Peripheral Nerve Regeneration: Opportunities and Challenges. J Spine Res Surg. 2023;5(1):10-18. [CrossRef] [PubMed] [PubMed Central]
90. Tsymbalyuk VI, Medvedev VV. [Neurogenic stem cells]. Kyiv: Koval, 2005. 596 p. Russian.
91. Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors. Biomolecules. 2023 May 18;13(5):856. [CrossRef] [PubMed] [PubMed Central]
92. Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL, Rajasingh J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells. 2020 Dec 31;10(1):54. [CrossRef] [PubMed] [PubMed Central]
93. Tashiro S, Nakamura M, Okano H. Regenerative Rehabilitation and Stem Cell Therapy Targeting Chronic Spinal Cord Injury: A Review of Preclinical Studies. Cells. 2022 Feb 16;11(4):685. [CrossRef] [PubMed] [PubMed Central]
94. Tsymbaliuk V, Petriv T, Medvedev V, Tsymbaliuk Y, Klymenko P, Vasiliev R, Tatarchuk M. [Early results of sciatic nerve morphologic structure recovery using tissue engineering methods after its complete transection in experiment]. TRAUMA. 2018;19(2):5-12. Ukrainian. [CrossRef]
95. Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health. 2022 Nov 12;26:100556. [CrossRef] [PubMed] [PubMed Central]
96. Yu F, Wang Y, Huang CQ, Lin SJ, Gao RX, Wu RY. Neuroprotective effect of mesenchymal stem cell-derived extracellular vesicles on optic nerve injury in chronic ocular hypertension. Neural Regen Res. 2023 Oct;18(10):2301-2306. [CrossRef] [PubMed] [PubMed Central]
97. Qin C, Guo Y, Yang DG, Yang ML, Du LJ, Li JJ. Induced Pluripotent Stem Cell Transplantation Improves Locomotor Recovery in Rat Models of Spinal Cord Injury: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cell Physiol Biochem. 2018;47(5):1835-1852. [CrossRef] [PubMed]
98. Sadatpoor SO, Salehi Z, Rahban D, Salimi A. Manipulated Mesenchymal Stem Cells Applications in Neurodegenerative Diseases. Int J Stem Cells. 2020 Mar 30;13(1):24-45. [CrossRef] [PubMed] [PubMed Central]
99. Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci. 2020 Dec 21;12:610581. [CrossRef] [PubMed] [PubMed Central]
100. Alakpa EV, Bahrd A, Wiklund K, Andersson M, Novikov LN, Ljungberg C, Kelk P. Bioprinted Schwann and Mesenchymal Stem Cell Co-Cultures for Enhanced Spatial Control of Neurite Outgrowth. Gels. 2023 Feb 22;9(3):172. [CrossRef] [PubMed] [PubMed Central]
101. Li Y, Ma Z, Ren Y, Lu D, Li T, Li W, Wang J, Ma H, Zhao J. Tissue Engineering Strategies for Peripheral Nerve Regeneration. Front Neurol. 2021 Nov 16;12:768267. [CrossRef] [PubMed] [PubMed Central]
102. Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio. 2023 May 19;20:100668. [CrossRef] [PubMed] [PubMed Central]
103. Zeng Z, Xu L, Xu Y, Ruan Y, Liu D, Li J, Niu C, Zheng S, Zhou P, Xiao Z. Normothermic Ex Vivo Heart Perfusion with Mesenchymal Stem Cell-Derived Conditioned Medium Improves Myocardial Tissue Protection in Rat Donation after Circulatory Death Hearts. Stem Cells Int. 2022 Nov 17;2022:8513812. [CrossRef] [PubMed] [PubMed Central]
104. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018 Nov 21;9(1):320. [CrossRef] [PubMed] [PubMed Central]
105. Gude NA, Sussman MA. Cardiac regenerative therapy: Many paths to repair. Trends Cardiovasc Med. 2020 Aug;30(6):338-343. [CrossRef] [PubMed] [PubMed Central]
106. Rohde E, Pachler K, Gimona M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy. 2019 Jun;21(6):581-592. [CrossRef] [PubMed]
107. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. 2019 Apr 4;7:8. [CrossRef] [PubMed] [PubMed Central]
108. Cizkova D, Murgoci AN, Cubinkova V, Humenik F, Mojzisova Z, Maloveska M, Cizek M, Fournier I, Salzet M. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res. 2020 Jan;45(1):134-143. [CrossRef] [PubMed]
109. Hendriks SH, Heidt S, Schulz AR, de Fijter JW, Reinders MEJ, Koning F, van Kooten C. Peripheral Blood Immune Cell Composition After Autologous MSC Infusion in Kidney Transplantation Recipients. Transpl Int. 2023 Jun 23;36:11329. [CrossRef] [PubMed] [PubMed Central]
110. Lisianyĭ MI. [Mesenchymal stem cells and their immunological properties]. Fiziologichnyi Zhurnal. 2013;59(3):126-34. Ukrainian. [CrossRef]
111. Semenova V, Tsymbalyuk V, Liubich L, Egorova D, Staino L, Shevchuk O, Vaslovich V, Verbovska S, Deryabina O, Shuvalova N, Pichkur L. Structural changes in the brain of rats with experimental allergic encephalomyelitis after cryopreserved mesenchymal stem cells impact. World of Medicine and Biology. 2020; 74:199-204. [CrossRef]
112. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019 Aug 13;8(8):886. [CrossRef] [PubMed] [PubMed Central]
113. Zhang Z, Zhang M, Sun Y, Li M, Chang C, Liu W, Zhu X, Wei L, Wen F, Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci Rep. 2023 Apr 10;13(1):5812. [CrossRef] [PubMed] [PubMed Central]
114. Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X. Application of stem cells in peripheral nerve regeneration. Burns Trauma. 2020 Feb 27;8:tkaa002. [CrossRef] [PubMed] [PubMed Central]
115. Donders R, Bogie JFJ, Ravanidis S, Gervois P, Vanheusden M, Marée R, Schrynemackers M, Smeets HJM, Pinxteren J, Gijbels K, Walbers S, Mays RW, Deans R, Van Den Bosch L, Stinissen P, Lambrichts I, Gyselaers W, Hellings N. Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells Dev. 2018 Jan 15;27(2):65-84. [CrossRef] [PubMed]
116. Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer's Disease. Front Cell Neurosci. 2018 Sep 24;12:317. [CrossRef] [PubMed] [PubMed Central]
117. Li J, Li H, Cai S, Bai S, Cai H, Zhang X. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther. 2021 May 17;12(1):289. [CrossRef] [PubMed] [PubMed Central]
118. Ma T, Wu J, Mu J, Gao J. Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci. 2022 Jan;17(1):4-19. [CrossRef] [PubMed] [PubMed Central]
119. Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, Sara G, Sadiq SA. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018 Mar;29:23-30. [CrossRef] [PubMed] [PubMed Central]
120. Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant. 2018 Dec;27(12):1825-1834. [CrossRef] [PubMed] [PubMed Central]
121. Cizkova D, Cubinkova V, Smolek T, Murgoci AN, Danko J, Vdoviakova K, Humenik F, Cizek M, Quanico J, Fournier I, Salzet M. Localized Intrathecal Delivery of Mesenchymal Stromal Cells Conditioned Medium Improves Functional Recovery in a Rat Model of Spinal Cord Injury. Int J Mol Sci. 2018 Mar 15;19(3):870. [CrossRef] [PubMed] [PubMed Central]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Z.K. Melikov, V.V. Medvediev
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.