Vascular injury during lumbar discectomy: risk factors, diagnosis, methods of surgical correction, features of anaesthetic management and intensive care
DOI:
https://doi.org/10.25305/unj.281502Keywords:
vascular injury, lumbar discectomy, risk factors, massive bleeding, surgical correction, permissive arterial hypotension, massive transfusion protocol, whole blood, anaesthetic management, intensive careAbstract
One of the priority tasks in neurosurgery is to reduce the frequency of postoperative complications and mortality. Lumbar discectomy is the most frequently performed intervention in spinal neurosurgery and it is a fairly safe procedure. One of the possible intraoperative surgical complications, that threatens the patient’s life is vascular injury.
The first clinical case of damage to the large vessels during discectomy was described in 1945. It is believed that the frequency of this complication is 1‒5 cases per 10,000 surgical interventions, but the literature notes that these figures may be significantly underestimated. Some authors indicate that the frequency of this complication, despite the development of surgical techniques over the past 50 years, has not significantly decreased, so it is important for surgeons to be informed and alert about the possibility of such a problem. Among the factors that significantly increase the risk of vascular damage congenital, acquired and technical are determined.
Variability of clinical symptoms of damage to lagre vessels is due to different localization of injury, type (arterial, venous or combined) and scale of vascular disaster. For each level of surgical intervention, the "most typical" vessel damage is identified. Vascular injury during discectomy can occur according to three clinical and pathomorphological scenarios: manifestation of vessel rupture symptoms, arteriovenous fistula or a pseudoaneurysm formation. According to different authors, the frequency of these findings varies significantly. This review examines the symptoms of possible variants of vascular damage development during discectomy and describes the characteristics of surgical correction methods. Along with clarifying the location and variant of vascular damage, the critical thing is assessing the amount of blood loss and the rate of ongoing bleeding. In the case of suspected massive bleeding, the paramount importance is the involvement of additional medical personnel for the surgical haemostasis and providing sufficient blood for haemotransfusions.
In case of a vascular accident, the key requirement for adequate anaesthetic management is the maintenance of permissive arterial hypotension until the moment of surgical haemostasis. Targeted treatment of haemorrhagic shock in case of damage to large vessels consists of rapid haemostatic resuscitation including blood components and products in a balanced 1:1:1 ratio, such as plasma, red blood cells, fresh frozen plasma, platelets, and coagulation factors. In Ukraine, obtaining a sufficient amount of blood components and products (according to the protocol of massive haemotransfusion) in case of unpredicted blood loss is a difficult task, therefore, in the absence of certain components or blood products, whole blood can be used as an alternative. The number and severity of complications and outcomes primarily depend on the efficiency and timeliness of blood transfusions, along with the speed of surgical arrest of bleeding. This publication describes in detail the main points of management of patients with massive bleeding according to modern international standards and Ukraine regulatory documents.
References
1. Meara JG, Leather AJ, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet (London, England). 2015;386(9993):569-624. [CrossRef] [PubMed]
2. Chisholm D, Stanciole AE, Tan Torres Edejer T, Evans DB. Economic impact of disease and injury: counting what matters. BMJ (Clinical research ed). 2010;340:c924. [CrossRef] [PubMed]
3. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet (London, England). 2015;385 Suppl 2:S11. [CrossRef] [PubMed]
4. Dobson GP. Trauma of major surgery: A global problem that is not going away. International journal of surgery (London, England). 2020;81:47-54. [CrossRef] [PubMed]
5. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet (London, England). 2012;380(9847):1059-1065. [CrossRef] [PubMed]
6. Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS data brief. 2021;(427):1-8. [CrossRef] [PubMed]
7. Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392(10159):1736-1788. [CrossRef] [PubMed]
8. Marappan K, Jothi R, Paul Raj S. Microendoscopic discectomy (MED) for lumbar disc herniation: comparison of learning curve of the surgery and outcome with other established case studies. Journal of spine surgery (Hong Kong). 2018;4(3):630-637. [CrossRef] [PubMed]
9. Desborough JP. The stress response to trauma and surgery. British journal of anaesthesia. 2000;85(1):109-117. [CrossRef] [PubMed]
10. Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120(3):564-578. [CrossRef] [PubMed]
11. Sessler DI, Devereaux PJ. Perioperative Troponin Screening. Anesthesia and analgesia. 2016;123(2):359-360. [CrossRef] [PubMed]
12. Price CC, Garvan CW, Monk TG. Type and severity of cognitive decline in older adults after noncardiac surgery. Anesthesiology. 2008;108(1):8-17. [CrossRef] [PubMed]
13. Vaara ST, Bellomo R. Postoperative renal dysfunction after noncardiac surgery. Current opinion in critical care. 2017;23(5):440-446. [CrossRef] [PubMed]
14. Kelkar KV. Post-operative pulmonary complications after non-cardiothoracic surgery. Indian journal of anaesthesia. 2015;59(9):599-605. [CrossRef] [PubMed]
15. Lederer AK, Pisarski P, Kousoulas L, Fichtner-Feigl S, Hess C, Huber R. Postoperative changes of the microbiome: are surgical complications related to the gut flora? A systematic review. BMC Surg. 2017;17(1):125. [CrossRef] [PubMed]
16. Liu B, Ye K, Gao S, Liu K, Feng H, Zhou F, et al. The summary of experience of abdominal vascular injury related to posterior lumbar surgery. Int Orthop. 2019;43(9):2191-2198. [CrossRef] [PubMed]
17. Papadoulas S, Konstantinou D, Kourea HP, Kritikos N, Haftouras N, Tsolakis JA. Vascular injury complicating lumbar disc surgery. A systematic review. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery. 2002;24(3):189-195. [CrossRef] [PubMed]
18. Linton RR. Arteriovenous Fistula between the Right Common Iliac Artery and the Inferior Vena Cava. Archives of Surgery. 1945;50(1). [CrossRef]
19. Desaussure RL. Vascular injury coincident to disc surgery. J Neurosurg. 1959;16(2):222-228. [CrossRef] [PubMed]
20. Franzini M, Altana P, Annessi V, Lodini V. Iatrogenic vascular injuries following lumbar disc surgery. Case report and review of the literature. The Journal of cardiovascular surgery. 1987;28(6):727-730. [PubMed]
21. Inamasu J, Guiot BH. Vascular injury and complication in neurosurgical spine surgery. Acta Neurochir (Wien). 2006;148(4):375-387. [CrossRef] [PubMed]
22. Jung HS, Kim DJ, Kim HS, Lee HK, Choi SJN, Chung SY. Vascular Complications Related to Posterior Lumbar Disc Surgery. Vascular specialist international. 2017;33(4):160-165. [CrossRef] [PubMed]
23. Goodkin R, Laska LL. Vascular and visceral injuries associated with lumbar disc surgery: medicolegal implications. Surg Neurol. 1998;49(4):358-370; discussion 370-352. [CrossRef] [PubMed]
24. Halil AK, Ince H, Ertan A, Tanriverdi T, Long DM. Complications After Lumbar Discectomies: A Medicolegal Perspective From Turkey. Neurosurgery Quarterly. 2006;16(3):111-116. [CrossRef]
25. Anda S, Aakhus S, Skaanes KO, Sande E, Schrader H. Anterior perforations in lumbar discectomies. A report of four cases of vascular complications and a CT study of the prevertebral lumbar anatomy. Spine (Phila Pa 1976). 1991;16(1):54-60. [CrossRef] [PubMed]
26. Serrano Hernando FJ, Paredero VM, Solis JV, Del Rio A, Lopez Parra JJ, Orgaz A, et al. Iliac arteriovenous fistula as a complication of lumbar disc surgery. Report of two cases and review of literature. The Journal of cardiovascular surgery. 1986;27(2):180-184. [PubMed]
27. Ganesan C, Petrus L, Ross IB. Regarding the possibility of anterior vascular injury from the posterior approach to the lumbar disc space: an anatomical study. Spine (Phila Pa 1976). 2012;37(22):E1371-1375. [CrossRef] [PubMed]
28. Baker JK, Reardon PR, Reardon MJ, Heggeness MH. Vascular injury in anterior lumbar surgery. Spine (Phila Pa 1976). 1993;18(15):2227-2230. [CrossRef] [PubMed]
29. Gurdjian ES, Webster JE, Ostrowski AZ, Hardy WG, Lindner DW, Thomas LM. Herniated lumbar intervertebral discs -- an analysis of 1176 operated cases. J Trauma. 1961;1:158-176. [CrossRef] [PubMed]
30. Ewah B, Calder I. Intraoperative death during lumbar discectomy. British journal of anaesthesia. 1991;66(6):721-723. [CrossRef] [PubMed]
31. Freischlag JA, Sise M, Quinones-Baldrich WJ, Hye RJ, Sedwitz MM. Vascular complications associated with orthopedic procedures. Surgery, gynecology & obstetrics. 1989;169(2):147-152. [PubMed]
32. Bolesta MJ. Vascular injury during lumbar diskectomy associated with peridiskal fibrosis: case report and literature review. J Spinal Disord. 1995;8(3):224-227. [CrossRef] [PubMed]
33. Holscher EC. Vascular and visceral injuries during lumbar-disc surgery. J Bone Joint Surg Am. 1968;50(2):383-393. [CrossRef] [PubMed]
34. Harbison SP. Major vascular complications of intervertebral disc surgery. Ann Surg. 1954;140(3):342-348. [CrossRef] [PubMed]
35. Uei H, Tokuhashi Y, Oshima M, Miyake Y. Vascular injury following microendoscopic lumbar discectomy treated with stent graft placement. J Neurosurg Spine. 2014;20(1):67-70. [CrossRef] [PubMed]
36. Jeon SH, Lee SH, Choi WC. Iliac artery perforation following lumbar discectomy with microsurgical carbon dioxide laser: a report of a rare case and discussion on the treatment. Spine (Phila Pa 1976). 2007;32(3):E124-125. [CrossRef] [PubMed]
37. Santillan A, Patsalides A, Gobin YP. Endovascular embolization of iatrogenic lumbar artery pseudoaneurysm following extreme lateral interbody fusion (XLIF). Vascular and endovascular surgery. 2010;44(7):601-603. [CrossRef] [PubMed]
38. Abbushi A, Cabraja M, Thomale UW, Woiciechowsky C, Kroppenstedt SN. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Eur Spine J. 2009;18(11):1621-1628. [CrossRef] [PubMed]
39. Quigley TM, Stoney RJ. Arteriovenous fistulas following lumbar laminectomy: the anatomy defined. Journal of vascular surgery. 1985;2(6):828-833. [CrossRef] [PubMed]
40. Szolar DH, Preidler KW, Steiner H, Riepl T, Flaschka G, Stiskal M, et al. Vascular complications in lumbar disk surgery: report of four cases. Neuroradiology. 1996;38(6):521-525. [CrossRef] [PubMed]
41. Birkeland IW, Taylor TK. Major vascular injuries in lumbar disc surgery. J Bone Joint Surg Br. 1969;51(1):4-19. [PubMed]
42. Tsai YD, Yu PC, Lee TC, Chen HS, Wang SH, Kuo YL. Superior rectal artery injury following lumbar disc surgery. Case report. J Neurosurg. 2001;95(1 Suppl):108-110. [CrossRef] [PubMed]
43. Keskin M, Serin KR, Genc FA, Aksoy M, Yanar F, Kurtoglu M. Iatrogenic major vascular injury during lumbar discectomy: report of three cases. Turk Neurosurg. 2013;23(3):385-388. [CrossRef] [PubMed]
44. Bingol H, Cingoz F, Yilmaz AT, Yasar M, Tatar H. Vascular complications related to lumbar disc surgery. J Neurosurg. 2004;100(3 Suppl Spine):249-253. [CrossRef] [PubMed]
45. Bozok S, Ilhan G, Destan B, Gokalp O, Gunes T. Approach to the vascular complications of lumbar disc surgery. Vascular. 2013;21(2):79-82. [CrossRef] [PubMed]
46. Busardo FP, Frati P, Carbone I, Pugnetti P, Fineschi V. Iatrogenic left common iliac artery and vein perforation during lumbar discectomy: a fatal case. Forensic science international. 2015;246:e7-11. [CrossRef] [PubMed]
47. van Zitteren M, Fan B, Lohle PN, de Nie JC, de Waal Malefijt J, Vriens PW, et al. A shift toward endovascular repair for vascular complications in lumbar disc surgery during the last decade. Annals of vascular surgery. 2013;27(6):810-819. [CrossRef] [PubMed]
48. Nadstawek J, Wassmann HD, Boker DK, Schultheiss R, Hornchen U. Injuries to the large abdominal vessels during lumbar nucleotomy. J Neurosurg Sci. 1989;33(3):281-286. [PubMed]
49. Staar RC, Stoever WW, Baldwin W, Hickman L. Arteriovenous fistula complicating lumbar disk surgery: report of a case. The Journal of the American Osteopathic Association. 1968;67(12):1379-1381. [PubMed]
50. Schrieber MH, Wolma FJ, Morettin LB. Angiographic findings in arteriovenous fistulas following lumbar disk surgery. The American journal of roentgenology, radium therapy, and nuclear medicine. 1967;101(4):957-960. [CrossRef] [PubMed]
51. Burger T, Meyer F, Tautenhahn J, Halloul Z, Fahlke J. Percutaneous treatment of rare latrogenic arteriovenous fistulas of the lower limbs. International surgery. 1998;83(3):198-201. [PubMed]
52. Rohit MK, Gupta A, Khandelwal N. Endovascular transluminal stent grafting: Treatment of choice for post lumbar spine surgery iliac arterio-venous fistulae. Catheter Cardiovasc Interv. 2016;88(6):E203-E208. [CrossRef] [PubMed]
53. Luan JY, Li X. A misdiagnosed iliac pseudoaneurysm complicated lumbar disc surgery performed 13 years ago. Spine (Phila Pa 1976). 2012;37(25):E1594-1597. [CrossRef] [PubMed]
54. Bialy T, Gooch AS, Shahriari A. High-output congestive failure due to arteriovenous fistula resulting from lumbar disc surgery--a case report. Angiology. 1988;39(7 Pt 1):616-619. [CrossRef] [PubMed]
55. Staple TW, Friedenberg MJ. Ilio-Iliac Arteriovenous Fistula Following Intervertebral Disc Surgery. Clin Radiol. 1965;16:248-250. [CrossRef] [PubMed]
56. May AR, Brewster DC, Darling RC, Browse NL. Arteriovenous fistula following lumbar disc surgery. The British journal of surgery. 1981;68(1):41-43. [CrossRef] [PubMed]
57. Wajszczuk WJ, Mowry FM, Whitcomb JG. Arteriovenous fistula--a complication of surgery of intervertebral disc. Presentation of a case with rapid development of congestive heart failure. Rocky Mountain medical journal. 1969;66(9):37-39. [PubMed]
58. Raptis S, Quigley F, Barker S. Vascular complications of elective lower lumbar disc surgery. Aust N Z J Surg. 1994;64(3):216-219. [CrossRef] [PubMed]
59. Santos E, Peral V, Aroca M, Hernandez Lezana A, Serrano FJ, Vilacosta I, et al. Arteriovenous fistula as a complication of lumbar disc surgery: case report. Neuroradiology. 1998;40(7):459-461. [CrossRef] [PubMed]
60. Fruhwirth J, Koch G, Amann W, Hauser H, Flaschka G. Vascular complications of lumbar disc surgery. Acta Neurochir (Wien). 1996;138(8):912-916. [CrossRef] [PubMed]
61. Feder JM, Assayag P, Brochet E, Andreassian B, Valere PE. [Arteriovenous fistula following surgery of intervertebral disk]. Annales de cardiologie et d’angeiologie. 1992;41(7):395-398. [PubMed]
62. Sagdic K, Ozer ZG, Senkaya I, Ture M. Vascular injury during lumbar disc surgery. Report of two cases; a review of the literature. VASA Zeitschrift fur Gefasskrankheiten. 1996;25(4):378-381. [PubMed]
63. Johnsrude IS, Bogey WM, Jr., Tripp MD. Postlaminectomy arteriovenous fistula masked by stenosis of the inferior vena cava. Cardiovascular and interventional radiology. 1994;17(6):336-338. [CrossRef] [PubMed]
64. Skippage P, Raja J, McFarland R, Belli AM. Endovascular repair of iliac artery injury complicating lumbar disc surgery. Eur Spine J. 2008;17 Suppl 2(Suppl 2):S228-231. [CrossRef] [PubMed]
65. Leech M, Whitehouse MJ, Kontautaite R, Sharma M, Shanbhag S. Abdominal Aortocaval Vascular Injury following Routine Lumbar Discectomy. Case reports in anesthesiology. 2014;2014:895973. [CrossRef] [PubMed]
66. Shevlin WA, Luessenhop AJ, Fox JL, McCullough DC. Perforation of the anterior annulus during lumbar discectomy. Case report. J Neurosurg. 1973;38(4):514-515. [CrossRef] [PubMed]
67. Wee HY, Wang CC, Kuo JR. Vascular injury after lumbar discectomy mimicking appendicitis: Report of a case. Asian journal of neurosurgery. 2015;10(3):243-245. [CrossRef] [PubMed]
68. Olcay A, Keskin K, Eren F. Iliac artery perforation and treatment during lumbar disc surgery by simple balloon tamponade. Eur Spine J. 2013;22 Suppl 3(Suppl 3):S350-352. [CrossRef] [PubMed]
69. Kietaibl S, Ahmed A, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. European journal of anaesthesiology. 2023;40(4):226-304. [CrossRef] [PubMed]
70. Adam EH, Funke M, Zacharowski K, Meybohm P, Keller H, Weber CF. Impact of Intraoperative Cell Salvage on Blood Coagulation Factor Concentrations in Patients Undergoing Cardiac Surgery. Anesthesia and analgesia. 2020;130(5):1389-1395. [CrossRef] [PubMed]
71. Devereaux PJ, Marcucci M, Painter TW, Conen D, Lomivorotov V, Sessler DI, et al. Tranexamic Acid in Patients Undergoing Noncardiac Surgery. The New England journal of medicine. 2022;386(21):1986-1997. [CrossRef] [PubMed]
72. Zufferey PJ, Lanoiselee J, Graouch B, Vieille B, Delavenne X, Ollier E. Exposure-Response Relationship of Tranexamic Acid in Cardiac Surgery. Anesthesiology. 2021;134(2):165-178. [CrossRef] [PubMed]
73. Eichhorn JH, Cooper JB, Cullen DJ, Maier WR, Philip JH, Seeman RG. Standards for patient monitoring during anesthesia at Harvard Medical School. JAMA. 1986;256(8):1017-1020. [CrossRef] [PubMed]
74. Standards for Basic Anesthetic Monitoring: Committee on Standards and Practice Parameters 2020. Available from: https://www.asahq.org/standards-and-guidelines/standards-for-basic-anesthetic-monitoring
75. Prado L, Lobo F, de Oliveira N, Espada D, Neves B, Teboul JL, et al. Intraoperative haemodynamic optimisation therapy with venoarterial carbon dioxide difference and pulse pressure variation - does it work? Anaesthesiology intensive therapy. 2020;52(4):297-303. [CrossRef] [PubMed]
76. Laszlo I, Janovszky A, Lovas A, Vargan V, Oveges N, Tanczos T, et al. Effects of goal-directed crystalloid vs. colloid fluid therapy on microcirculation during free flap surgery: A randomised clinical trial. European journal of anaesthesiology. 2019;36(8):592-604. [CrossRef] [PubMed]
77. Pham HP, Shaz BH. Update on massive transfusion. British journal of anaesthesia. 2013;111 Suppl 1:i71-82. [CrossRef] [PubMed]
78. Kabon B, Sessler DI, Kurz A, Crystalloid-Colloid Study T. Effect of Intraoperative Goal-directed Balanced Crystalloid versus Colloid Administration on Major Postoperative Morbidity: A Randomized Trial. Anesthesiology. 2019;130(5):728-744. [CrossRef] [PubMed]
79. Yang JC, Xu CX, Sun Y, Dang QL, Li L, Xu YG, et al. Balanced ratio of plasma to packed red blood cells improves outcomes in massive transfusion: A large multicenter study. Experimental and therapeutic medicine. 2015;10(1):37-42. [CrossRef] [PubMed]
80. Sadacharam K, Brenn BR, Zhang Y, He Z. Fresh frozen plasma-to-red blood cell ratio is an independent predictor of blood loss in patients with neuromuscular scoliosis undergoing posterior spinal fusion. Spine J. 2020;20(3):369-379. [CrossRef] [PubMed]
81. Javaherforoosh Zadeh F, Janatmakan F, Shafaee Tonekaboni M, Soltanzadeh M. The Effect of Fibrinogen on Blood Loss After Lumbar Surgery: A Double-Blind Randomized Clinical Trial. Anesthesiology and pain medicine. 2019;9(3):e91199. [CrossRef] [PubMed]
82. Fischer MO, Guinot PG, Debroczi S, Huette P, Beyls C, Babatasi G, et al. Individualised or liberal red blood cell transfusion after cardiac surgery: a randomised controlled trial. British journal of anaesthesia. 2022;128(1):37-44. [CrossRef] [PubMed]
83. Fogagnolo A, Taccone FS, Vincent JL, Benetto G, Cavalcante E, Marangoni E, et al. Using arterial-venous oxygen difference to guide red blood cell transfusion strategy. Critical care (London, England). 2020;24(1):160. [CrossRef] [PubMed]
84. Barnes A. Transfusion of universal donor and uncrossmatched blood. Bibliotheca haematologica. 1980(46):132-142. [CrossRef] [PubMed]
85. Harrold IM, Seheult JN, Alarcon LH, Corcos A, Sperry JL, Triulzi DJ, et al. Hemolytic markers following the transfusion of uncrossmatched, cold-stored, low-titer, group O+ whole blood in civilian trauma patients. Transfusion. 2020;60 Suppl 3:S24-S30. [CrossRef] [PubMed]
86. Seheult JN, Triulzi DJ, Alarcon LH, Sperry JL, Murdock A, Yazer MH. Measurement of haemolysis markers following transfusion of uncrossmatched, low-titre, group O+ whole blood in civilian trauma patients: initial experience at a level 1 trauma centre. Transfusion medicine (Oxford, England). 2017;27(1):30-35. [CrossRef] [PubMed]
87. Harris CT, Totten M, Davenport D, Ye Z, O’Brien J, Williams D, et al. Experience with uncrossmatched blood refrigerator in emergency department. Trauma surgery & acute care open. 2018;3(1):e000184. [CrossRef] [PubMed]
88. Brill JB, Tang B, Hatton G, Mueck KM, McCoy CC, Kao LS, et al. Impact of Incorporating Whole Blood into Hemorrhagic Shock Resuscitation: Analysis of 1,377 Consecutive Trauma Patients Receiving Emergency-Release Uncrossmatched Blood Products. Journal of the American College of Surgeons. 2022;234(4):408-418. [CrossRef] [PubMed]
89. Yazer MH, Jackson B, Sperry JL, Alarcon L, Triulzi DJ, Murdock AD. Initial safety and feasibility of cold-stored uncrossmatched whole blood transfusion in civilian trauma patients. J Trauma Acute Care Surg. 2016;81(1):21-26. [CrossRef] [PubMed]
90. Seheult JN, Bahr M, Anto V, Alarcon LH, Corcos A, Sperry JL, et al. Safety profile of uncrossmatched, cold-stored, low-titer, group O+ whole blood in civilian trauma patients. Transfusion. 2018;58(10):2280-2288. [CrossRef] [PubMed]
91. Yazer MH, Spinella PC, Doyle L, Kaufman RM, Dunn R, Hess JR, et al. Transfusion of Uncrossmatched Group O Erythrocyte-containing Products Does Not Interfere with Most ABO Typings. Anesthesiology. 2020;132(3):525-534. [CrossRef] [PubMed]
92. Malkin M, Nevo A, Brundage SI, Schreiber M. Effectiveness and safety of whole blood compared to balanced blood components in resuscitation of hemorrhaging trauma patients - A systematic review. Injury. 2021;52(2):182-188. [CrossRef] [PubMed]
93. Kronstedt S, Lee J, Millner D, Mattivi C, LaFrankie H, Paladino L, et al. The Role of Whole Blood Transfusions in Civilian Trauma: A Review of Literature in Military and Civilian Trauma. Cureus. 2022;14(4):e24263. [CrossRef] [PubMed]
94. Barmparas G, Huang R, Hayes C, Pepkowitz SH, Abumuhor IA, Thomasian SE, et al. Implementation of a low-titer stored whole blood transfusion program for civilian trauma patients: Early experience and logistical challenges. Injury. 2022;53(5):1576-1580. [CrossRef] [PubMed]
95. Gallaher JR, Dixon A, Cockcroft A, Grey M, Dewey E, Goodman A, et al. Large volume transfusion with whole blood is safe compared with component therapy. J Trauma Acute Care Surg. 2020;89(1):238-245. [CrossRef] [PubMed]
96. Williams J, Merutka N, Meyer D, Bai Y, Prater S, Cabrera R, et al. Safety profile and impact of low-titer group O whole blood for emergency use in trauma. J Trauma Acute Care Surg. 2020;88(1):87-93. [CrossRef] [PubMed]
97. McCoy CC, Montgomery K, Cotton ME, Meyer DE, Wade CE, Cotton BA. Can RH+ whole blood be safely used as an alternative to RH- product? An analysis of efforts to improve the sustainability of a hospital’s low titer group O whole blood program. J Trauma Acute Care Surg. 2021;91(4):627-633. [CrossRef] [PubMed]
98. Siletz AE, Blair KJ, Cooper RJ, Nguyen NC, Lewis SJ, Fang A, et al. A pilot study of stored low titer group O whole blood + component therapy versus component therapy only for civilian trauma patients. J Trauma Acute Care Surg. 2021;91(4):655-662. [CrossRef] [PubMed]
99. Kemp Bohan PM, McCarthy PM, Wall ME, Adams AM, Chick RC, Forcum JE, et al. Safety and efficacy of low-titer O whole blood resuscitation in a civilian level I trauma center. J Trauma Acute Care Surg. 2021;91(2S Suppl 2):S162-S168. [CrossRef] [PubMed]
100. Lee JS, Khan AD, Wright FL, McIntyre RC, Jr., Dorlac WC, Cribari C, et al. Whole Blood Versus Conventional Blood Component Massive Transfusion Protocol Therapy in Civilian Trauma Patients. The American surgeon. 2022;88(5):880-886. [CrossRef] [PubMed]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Oleksii S. Nekhlopochyn, Maksym M. Pylypenko, Sergii O. Dubrov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.