Photodynamic therapy of malignant brain gliomas
DOI:
https://doi.org/10.25305/unj.263389Keywords:
laser radiation, photosensitizer, antitumor photodynamic therapy, malignant brain gliomasAbstract
Treatment of malignant gliomas of the brain remains a serious problem on a global scale, despite intensive research into the causes and mechanisms of their progression. When using traditional surgical approaches and imaging methods tumor cell infiltrates may be overlooked, as a result of which, malignant gliomas relapse often occurs near the marginal region of the surgical cavity. A method that allows visual identification of tumor tissue and at the same time provides an opportunity to selectively destroy it is photodynamic therapy (PDT) ‒ a two-stage treatment that includes the introduction (intravenous, intraperitoneal, local or oral) of a light-sensitive chemical agent (photosensitizer (PS)) followed by its activation at a certain wavelength of light.
The principle of PDT is based on the cytotoxic effects caused by PS, which selectively accumulates in malignant tumor cells and is activated by light rays of the appropriate wavelength, generating singlet oxygen and free radicals, which trigger photochemical reactions in tumor cells with subsequent destruction of protein structures. Tumor tissue has a higher affinity for PSs. PSs are divided into 1st, 2nd and 3rd generation molecules. So far, 3rd generation PSs have not yet been approved for clinical use. In vitro and in vivo experimental studies confirmed the effectiveness of PDT of brain tumors using 2nd generation PSs.
The simultaneous use of surgery under the control of fluorescence and PDT enables both the visualization of tumor cells and their selective destruction. Regardless of PDT, PSs are used for the purpose of auxiliary delineation of tumor borders for maximum tumor removal during fluorescence-guided surgery.
The review examines the development of PDT in a historical aspect, the contribution of domestic scientists, in particular, scientists of the Institute of Neurosurgery named after acad. A. P. Romodanov, National Academy of Medical Sciences of Ukraine to the development of the problem of PDT in neuro-oncology; preclinical studies of PDT and experimental approaches to increase the efficiency of PDT are characterized. Analysis of data from clinical trials confirms that using PDT as an adjunctive treatment of malignant gliomas administered immediately after maximal resection is safe, reduces the risk of recurrence by targeting residual tumor cells in the resection cavity, improves survival and quality of life of patients. The absence of information on the development of resistance to multiple PDT sessions suggests the possibility of repeated treatments of tumor cells not removed during surgery.
References
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660
Low JT, Ostrom QT, Cioffi G, Neff C, Waite KA, Kruchko C, Barnholtz-Sloan JS. Primary brain and other central nervous system tumors in the United States (2014-2018): A summary of the CBTRUS statistical report for clinicians. Neurooncol Pract. 2022 Feb 22;9(3):165-182. doi: 10.1093/nop/npac015
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106
Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol. 2021 Oct 5;23(12 Suppl 2):iii1-iii105. doi: 10.1093/neuonc/noab200
Fedorenko Z, Michailovich Yu, Goulak L, Gorokh Ye, Ryzhov A, Soumkina O, Koutsenko L. CANCER IN UKRAINE, 2020 - 2021: Incidence, mortality, prevalence and other relevant statistics. Bulletin of the National Cancer Registry of Ukraine. 2022;23. Available at: http://www.ncru.inf.ua/publications/BULL_23/index_e.htm
Kliuchka VM, Rozumenko AV, Rozumenko VD, Semenova VM, Malysheva TA. [Heterogeneity of oligoastrocytoma: morphology, surgery, and survival in the series of 163 patients. Retrospective study]. Ukrainian Neurosurgical Journal. 2018;(3):24-33. Ukrainian. doi: 10.25305/unj.126654
Rozumenko AV, Kliuchka VM, Rozumenko VD, Fedorenko ZP. [Survival rates in patients with the newly diagnosed glioblastoma: Data from the National Cancer Registry of Ukraine, 2008-2016]. Ukrainian Neurosurgical Journal. 2018;(2):33-9. Ukrainian. doi: 10.25305/unj.124878
Dupont C, Vermandel M, Leroy HA, Quidet M, Lecomte F, Delhem N, Mordon S, Reyns N. Intraoperative photoDynamic Therapy for Glioblastomas (INDYGO): Study Protocol for a Phase I Clinical Trial. Neurosurgery. 2019 Jun 1;84(6): E414-E419. doi: 10.1093/neuros/nyy324
van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol. 2022; Apr;18(4):221-236. doi: 10.1038/s41582-022-00621-0
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. 2019 Feb;141(3):595-607. doi: 10.1007/s11060-019-03103-4
Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y, Kaneko S, Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg. 2013 Oct;119(4):845-52. doi: 10.3171/2013.7.JNS13415
Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW, Jogal S, LaViolette PS, Connelly JM, Whelan HT. Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? Photodiagnosis Photodyn Ther. 2015 Sep;12(3):530-44. doi: 10.1016/j.pdpdt.2015.04.009
Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006; May;7(5):392-401. doi: 10.1016/S1470-2045(06)70665-9
Wyss P, Tadir Y, Tromberg BJ, Haller U. History of photomedicine. Photomedicine in Gynecology and Reproduction. Basel: Karger, 2000. p. 4-11.
Nazarian RS, Spіrіdonova KYu, Pіontkovska OV, Vlasov AV. [Photodynamic Therapy: From the Antiquity to the Present. Literature Review]. Novini stomatologії. 2015;(3):68-70. Ukrainian.
Perria C, Capuzzo T, Cavagnaro G, Datti R, Francaviglia N, Rivano C, Tercero VE. Fast attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci. 1980 Jul-Dec;24(3-4):119-29
Muller PJ, Wilson BC. Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg. 1996 Oct;14(5):263-70. doi: 10.1089/clm.1996.14.263
Kostron H, Obwegeser A, Jakober R. Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B. 1996 Nov;36(2):157-68. doi: 10.1016/s1011-1344(96)07364-2
Kostron H. Photodynamic diagnosis and therapy and the brain. Methods Mol Biol. 2010;635: 261-80. doi: 10.1007/978-1-60761-697-9_17
Gamaleya NF. [Lasers in experiment and clinic]. Moscow: Medicine; 1972. Russian.
Zavads'ka TS, Boyko II, Boyko AH. Fotodynamichna terapiya v onkolohiyi. Oncology. 2021;(1-2):53-56. Ukrainian.
Bogachkov NI, Melnik IS, Rozumenko VD. Tekhnika i metodologiya fotodinamicheskoy terapii. T.1. Lazery v terapii zlokachestvennykh opukholey: Kiev: Kievskiy politekhnicheskiy institute; 1995. Russian.
Bidnenko VN, Sigal VL, Rozumenko VD. Effekty lokal'noy gipertermii pri fotodinamicheskoy terapii opukholey mozga. Dopovidi NAN Ukrayiny. 1999;(10):181-85. Russian.
Bidnenko VN, Sigal VL, Rozumenko VD. Theoretical estimations of the area of destruction in brain tumors under photodynamic therapy. Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study, (3 Nov. 2000); doi: 10.1117/12.405938.
Nosov AT, Rozumenko VD, Semenova VM, Medyanik ІO. Morfofunktsіonal'nі zmіni mozku pri dії vipromіnyuvannya visokoenergetichnikh vuglekislotnogo, neodimovogo-AІG ta gol'mієvogo lazerіv. Byulleten' UAN. 1998;(5):136-137. Ukrainian.
Rozumenko V.D., Semenova V.M. Fotodinamicheskaya terapiya opukholey golovnogo mozga: effekt v kul'ture gliomy (shtamm 101.8) s primeneniem ftalotsianina. Fotobiolohiya i fotomedytsyna. 2000;1(2):65-70. Russian.
Rozumenko VD, Semyonova VM, Stajno LP, Gerasenko KM. Photodynamic therapy of brain tumours:effect in culture of glioma (stamm 101.8). Ukrainian Neurosurgical Journal. 2001;(4):59–66. Russian.
Rozumenko VD, Semenova VM, Othman O. [The brain and glial tumors tissue morphology changes under the highly energetic radiation of CO2 and Nd-YAG lasers influence]. Ukrainian Neurosurgical Journal. 2004;(3):36-42. Russian.
Rozumenko VD, Sihal VL, Khomenko OV, Herasenko KM. Sposib terapiyi hlybokoroztashovanykh pukhlynnykh tkanyn. Patent of Ukraine 49273. 2002 September 16. Ukraine.
Berezovs'ka IV, Bilash OM, Rozhyts'kyy MM. Fotosensibilizator dlya fotodynamichnoyi terapiyi. Patent of Ukraine 87864. 2014 February 25. Ukraine.
Kholin VV. Sposib oprominennya pukhlyny metodom lazernoho skanuvannya v fotodynamichniy terapiyi. Patent of Ukraine 89226. 2014 April 10. Ukraine.
Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med. 2007; Jun;39(5):386-93. doi: 10.1002/lsm.20507
Dubey SK, Pradyuth SK, Saha RN, Singhvi G, Alexander A, Agrawal M, Shapiro BA, Puri A. Application of photodynamic therapy drugs for management of glioma. Journal of Porphyrins and Phthalocyanines. 2019;23(11-12):1216-28. doi: 10.1142/S1088424619300192.
Cramer SW, Chen CC. Photodynamic Therapy for the Treatment of Glioblastoma. Front Surg. 2020 Jan 21;6:81. doi: 10.3389/fsurg.2019.00081
Gelfond ML, Barchuk AS, Vasiliev DT, Stukov AN. [PDT opportunities in oncology practice]. Russian Journal of Biotherapy. 2003;2(4):67-71. Russian.
Minaev BF. [Spin-catalysis in the processes of photo- and bioactivation of molecular oxygen]. Ukr Biokhim Zh (1999). 2009 May-Jun;81(3):21-45. Russian.
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two– cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther. 2005;(2):1–23. doi: 10.1016/S1572-1000(05)00030-X
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81. doi: 10.3322/caac.20114
Kaneko S, Fujimoto S, Yamaguchi H, Yamauchi T, Yoshimoto T, Tokuda K. Photodynamic Therapy of Malignant Gliomas. Prog Neurol Surg. 2018;32:1-13. doi: 10.1159/000469675
Marks PV, Igbaseimokumo U, Chakrabarty А. A preliminary experimental in vivo study of the effect of photodynamic therapy on human pituitary adenoma implanted in mice. Br. J. Neurosurg. 1998;12 (2):140-5. doi: 10.1080/02688699845285
Li F, Cheng Y, Lu J, Hu R, Wan Q, Feng H. Photodynamic therapy boosts anti-glioma immunity in mice: a dependence on the activities of T cells and complement C3. J Cell Biochem. 2011; Oct;112(10):3035-43. doi: 10.1002/jcb.23228
Muller PJ, Wilson BC. Photodynamic therapy of brain tumors--a work in progress. Lasers Surg Med. 2006 Jun;38(5):384-9. doi: 10.1002/lsm.20338. PMID: 16788926.
Zavadskaya ТS. Photodynamic therapy in the treatment of glioma. Exp Oncol. 2015; Dec;37(4):234-41
Dougherty TJ, Potter WR, Weishaupt KR. The structure of the active component of hematoporphyrin derivative. In: Dorion D.R., Gomer C.J., editors. Porphyrin localization and treatment of tumors. New York: Alan R Liss Inc. 1984:301-314. Available at: https://www.pdt-association.com/history.
de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev. 2017 Oct;9(5):761-773. doi: 10.1007/s12551-017-0293-3
Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther. 2010 Jun;7(2):61-75. doi: 10.1016/j.pdpdt.2010.02.001
Wang S, Bromley E, Xu L, Chen JC, Keltner L. Talaporfin sodium. Expert Opin Pharmacother. 2010 Jan;11(1):133-40. doi: 10.1517/14656560903463893
Müller S, Walt H, Dobler-Girdziunaite D, Fiedler D, Haller U. Enhanced photodynamic effects using fractionated laser light. J Photochem Photobiol B. 1998 Jan;42(1):67-70. doi: 10.1016/S1011-1344(97)00124-3
Veenhuizen RB, Ruevekamp MC, Oppelaar H, Helmerhorst TJ, Kenemans P, Stewart FA. Foscan-mediated photodynamic therapy for a peritoneal-cancer model: drug distribution and efficacy studies. Int J Cancer. 1997 Oct 9;73(2):230-5. doi: 10.1002/(sici)1097-0215(19971009)73:2<230::aid-ijc12>3.0.co;2-j
Kaplan MJ, Somers RG, Greenberg RH, Ackler J. Photodynamic therapy in the management of metastatic cutaneous adenocarcinomas: case reports from phase 1/2 studies using tin ethyl etiopurpurin (SnET2). J Surg Oncol. 1998 Feb;67(2):121-5. doi: 10.1002/(sici)1096-9098(199802)67:2<121.:aid-jso9>3.0.co;2-c
Renschler M, Yuen A, Panella T. Photodynamic therapy trials with Lutetium Texaphyrin. Photochem Photobiol. 1997; 65: 475.
Machacek M, Kollar J, Miletin M, Kucera R, Kubat P, Simunek T, Novakova V, Zimcik P. Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: synthesis and in vitro photodynamic studies of water-soluble non-aggregating photosensitizer. RSC Advances. 2016;6(12):10064–77. doi 10.1039/C5RA25881B
Stepp H, Stummer W. 5-ALA in the management of malignant glioma. Lasers Surg Med. 2018 Jul;50(5):399-419. doi: 10.1002/lsm.22933
Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther. 2014 Sep;11(3):319-30. doi: 10.1016/j.pdpdt.2014.04.004
Chen X, Wang C, Teng L, Liu Y, Chen X, Yang G, Wang L, Liu H, Liu Z, Zhang D, Zhang Y, Guan H, Li X, Fu C, Zhao B, Yin F, Zhao S. Calcitriol enhances 5-aminolevulinic acid-induced fluorescence and the effect of photodynamic therapy in human glioma. Acta Oncol. 2014 Mar;53(3):405-13. doi: 10.3109/0284186X.2013.819993
Skandalakis GS, Bouras A, Rivera D, Rizea C, Raj JG, Bozec D, Hadjipanayis CG. Photodynamic Therapy of Diffuse Intrinsic Pontine Glioma in Combination with Radiation. Neurosurgery. 2020 Dec;67(Supplement_1):nyaa447_873. doi: 10.1093/neuros/nyaa447_873
An YW, Liu HQ, Zhou ZQ, Wang JC, Jiang GY, Li ZW, Wang F, Jin HT. Sinoporphyrin sodium is a promising sensitizer for photodynamic and sonodynamic therapy in glioma. Oncol Rep. 2020 Oct;44(4):1596-1604. doi: 10.3892/or.2020.7695
Zhang X, Guo M, Shen L, Hu S. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model. Photodiagnosis Photodyn Ther. 2014 Dec;11(4):603-12. doi: 10.1016/j.pdpdt.2014.10.007
Sun W, Kajimoto Y, Inoue H, Miyatake S, Ishikawa T, Kuroiwa T. Gefitinib enhances the efficacy of photodynamic therapy using 5-aminolevulinic acid in malignant brain tumor cells. Photodiagnosis Photodyn Ther. 2013 Feb;10(1):42-50. doi: 10.1016/j.pdpdt.2012.06.003
Fisher C, Obaid G, Niu C, Foltz W, Goldstein A, Hasan T, Lilge L. Liposomal Lapatinib in Combination with Low-Dose Photodynamic Therapy for the Treatment of Glioma. Journal of Clinical Medicine. 2019; 8(12):2214. doi: 10.3390/jcm8122214
Velazquez FN, Miretti M, Baumgartner MT, Caputto BL, Tempesti TC, Prucca CG. Effectiveness of ZnPc and of an amine derivative to inactivate Glioblastoma cells by Photodynamic Therapy: an in vitro comparative study. Sci Rep.2019; 9:3010 doi: 10.1038/s41598-019-39390-0
Zavadskaya TS, Taranets LP, Trompak OO. [Fotolon-mediated photodynamic therapy of experimental gliomas]. Photobiology and Photomedicine. 2013;(1–2):81-8. Ukrainian. Available at: http://fnfjournal.univer.kharkov.ua/Ru/nomera/2013_1_2/zavadska.pdf
Rozumenko V.D., Semenova V.M., Stayno L.P. Issledovanie effekta fotodinamicheskoy terapii v kul'turakh gliom golovnogo mozga eksperimental'nykh zhivotnykh i cheloveka. Aspekty primeneniya metoda kul'tivirovaniya tkaney v neyrobiologii i neyroonkologii. Kiev: Interservis; 2018. Russian.
Rozumenko VD. Innovative laser technologies in brain tumors surgery. Photobiology аnd Photomedicine. 2018;24:9-12. Available at: http://fnfjournal.univer.kharkov.ua/Ua/nomera/2018_1/1_rozumenko.pdf
Fontana LC, Pinto JG, Pereira AHC, Soares CP, Raniero LJ, Ferreira-Strixino J. Photodithazine photodynamic effect on viability of 9L/lacZ gliosarcoma cell line. Lasers Med Sci. 2017 Aug;32(6):1245-1252. doi: 10.1007/s10103-017-2227-5
Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, Vedunova MV, Krysko DV. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer. 2019 Dec 16;7(1):350. doi: 10.1186/s40425-019-0826-3
Fisher CJ, Niu C, Foltz W, Chen Y, Sidorova-Darmos E, Eubanks JH, Lilge L. ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PLoS One. 2017 Jul 31;12(7):e0181654. doi: 10.1371/journal.pone.0181654
Acker G, Palumbo A, Neri D, Vajkoczy P, Czabanka M. F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth. J Neurooncol. 2016 Aug;129(1):33-8. doi: 10.1007/s11060-016-2143-8
Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL, Lathia JD, Forrester MT, Lee J, Stamler JS, Goldman SA, Bredel M, McLendon RE, Sloan AE, Hjelmeland AB, Rich JN. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell. 2011 Jul 8;146(1):53-66. doi: 10.1016/j.cell.2011.06.006
Bhowmick R, Girotti AW. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett. 2014 Feb 1;343(1):115-22. doi: 10.1016/j.canlet.2013.09.025
Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med. 2019 Jun; 137:37-45. doi: 10.1016/j.freeradbiomed.2019.04.013
Fahey JM, Girotti AW. Nitric Oxide Antagonism to Anti-Glioblastoma Photodynamic Therapy: Mitigation by Inhibitors of Nitric Oxide Generation. Cancers (Basel). 2019 Feb 15;11(2):231. doi: 10.3390/cancers11020231
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Huang JL. A novel role of Cx43-composed GJIC in PDT phototoxicity: an implication of Cx43 for the enhancement of PDT efficacy. Int J Biol Sci. 2019 Jan 1;15(3):598-609. doi: 10.7150/ijbs.29582
Chernov MF, Muragaki Y, Kesari S, McCutcheon IE (eds): Intracranial Gliomas. Part III - Innovative Treatment Modalities. Prog Neurol Surg. Basel, Karger. 2018;32:1-13. doi: 10.1159/000469675.
Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Dougherty TJ. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX. Lasers Surg Med. 2006; Jun;38(5):439-44. doi: 10.1002/lsm.20340. PMID: 16634075.
Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman ML. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien). 2017 Jan;159(1):151-167. doi: 10.1007/s00701-016-3028-5
Wang HW, Zhu TC, Putt ME, Solonenko M, Metz J, Dimofte A, Miles J, Fraker DL, Glatstein E, Hahn SM, Yodh AG. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy. J Biomed Opt. 2005; Jan-Feb;10(1):14004. doi: 10.1117/1.1854679
Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W. Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg. 2020; Jan 24:1-11. doi: 10.3171/2019.11.JNS192443
Akimoto J, Fukami S, Suda T, Ichikawa M, Haraoka R, Kohno M, Shishido-Hara Y, Nagao T, Kuroda M. First autopsy analysis of the efficacy of intra-operative additional photodynamic therapy for patients with glioblastoma. Brain Tumor Pathol. 2019; Oct;36(4):144-151. doi: 10.1007/s10014-019-00351-0
Vermandel M, Dupont C, Lecomte F, Leroy HA, Tuleasca C, Mordon S, Hadjipanayis CG, Reyns N. Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J Neurooncol. 2021; May;152(3):501-514. doi: 10.1007/s11060-021-03718-6
Search of: photodynamic therapy | Glioma - List Results [Internet]. U.S. National Library of Medicine. ClinicalTrials. gov. Available at: https://clinicaltrials.gov/ct2/results?con d=Glioma&term=photodynamic++therapy&cntry=&state =&city=&dist=&Search=Search
Eljamel MS, Goodman C, Moseley H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci. 2008 Oct;23(4):361-7. doi: 10.1007/s10103-007-0494-2
van Linde ME, Brahm CG, de Witt Hamer PC, Reijneveld JC, Bruynzeel AME, Vandertop WP, van de Ven PM, Wagemakers M, van der Weide HL, Enting RH, Walenkamp AME, Verheul HMW. Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis. J Neurooncol. 2017; Oct;135(1):183-192. doi: 10.1007/s11060-017-2564-z
Aumiller M, Heckl C, Quach S, Stepp H, Ertl-Wagner B, Sroka R, Thon N, Rühm A. Interrelation between Spectral Online Monitoring and Postoperative T1-Weighted MRI in Interstitial Photodynamic Therapy of Malignant Gliomas. Cancers (Basel). 2021; Dec 27;14(1):120. doi: 10.3390/cancers14010120
Lietke S, Schmutzer M, Schwartz C, Weller J, Siller S, Aumiller M, Heckl C, Forbrig R, Niyazi M, Egensperger R, Stepp H, Sroka R, Tonn JC, Rühm A, Thon N. Interstitial Photodynamic Therapy Using 5-ALA for Malignant Glioma Recurrences. Cancers (Basel). 2021; Apr 7;13(8):1767. doi: 10.3390/cancers13081767
Kobayashi T, Nitta M, Shimizu K, Saito T, Tsuzuki S, Fukui A, Koriyama S, Kuwano A, Komori T, Masui K, Maehara T, Kawamata T, Muragaki Y. Therapeutic Options for Recurrent Glioblastoma-Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics. 2022; Feb 2;14(2):353. doi: 10.3390/pharmaceutics14020353
Della Puppa A, Lombardi G, Rossetto M, Rustemi O, Berti F, Cecchin D, Gardiman MP, Rolma G, Persano L, Zagonel V, Scienza R. Outcome of patients affected by newly diagnosed glioblastoma undergoing surgery assisted by 5-aminolevulinic acid guided resection followed by BCNU wafers implantation: a 3-year follow-up. J Neurooncol. 2017; Jan;131(2):331-340. doi: 10.1007/s11060-016-2301-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Volodymyr D. Rozumenko, Larysa D. Liubich, Larysa P. Staino, Diana M. Egorova, Tatyana А. Malysheva, Andrii V. Dashchakovskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.