Cytomegalovirus infection of brain tumors and CMV immunotherapy

Authors

DOI:

https://doi.org/10.25305/unj.258544

Keywords:

cytomegalovirus, brain tumors, CMV immunotherapy

Abstract

Objective. The article presents the literature of the last ten years and the results of our own research on the importance of cytomegalovirus (CMV) in the development of brain tumors, especially glioblastoma and medulloblastoma. Two alternative views are discussed - the pros and cons of the role of the virus in the induction and stimulation of tumor growth.
Materials and methods. 256 samples of biotic material of tissues of various brain tumors were studied. Among them are histologically diagnosed: in 123 cases glial tumors of various grade of malignancy, in 51 cases meningiomas, in 25 cases medulloblastomas, in 16 cases oligodendroastrocytomas of the second grade of malignancy, in 14 cases metastatic tumors. Tumor fragments were obtained from biopsy material 1.5-2.0 hours after surgical removal. To detect the presence of CMV in the tumor tissue real-time polymerase chain reaction (PCR) using "DNA sorb A and B" kits was performed, the company "Amplisens" (Russia), according to the manufacturer’s instructions and BioRal device (USA) with standard DNA detection kits of CMV "DNA Technology" (Russia). Cytological imprints on slides were also made from tumor tissue fragments, which were examined by indirect immunofluorescence method with monoclonal antibodies to CMV pP-65 protein using the "MonoScan CMV" kit.
Results. The frequency of detection of CMV antigen or its DNA in brain tissue depends on the research method - the immunofluorescence method detects pP-65 antigen by monoclonal antibodies 2-2.5 times more often than the PCR method of CMV in tumor tissue. In the tissue of different histogenesis of brain tumors both the pP-65 antigen and CMV DNA are detected with different frequencies. CMV was most often detected in tumors of glial origin and medulloblastomas. No CMV DNA was detected in the peripheral blood of patients with brain tumors at the time of admission for examination and surgical treatment, indicating an earlier contamination of the tumor focus with this virus. Data on the mechanisms of CMV induction and stimulation of tumor growth by activating cell proliferation, including nerve stem cells, are presented. Works using specific antiviral therapy and CMV specific cell immunotherapy in the treatment of gliomas have been analyzed in detail.
Conclusions. The paper concludes on the important clinical and prognostic value of determining CMV infection in brain tumors and indicates the need for CMV viral and cellular immunotherapy in the combined treatment of malignant brain tumors.

Author Biographies

Mykola I. Lisianyi, Romodanov Neurosurgery Institute, Kyiv

Neuroimmunology Department

Antonina I. Klyuchnikova, Romodanov Neurosurgery Institute, Kyiv

Neuroimmunology Department

Oleksandr M. Lisianyi, Romodanov Neurosurgery Institute, Kyiv

Intracerebral Tumors Department

Liudmyla M. Belska, Romodanov Neurosurgery Institute, Kyiv

Neuroimmunology Department

Larysa A. Kot, Romodanov Neurosurgery Institute, Kyiv

Clinical Diagnostic Laboratory

Diana M. Stanetska, Romodanov Neurosurgery Institute, Kyiv

Neuroimmunology Department

References

Rahman M, Dastmalchi F, Karachi A, Mitchell D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. Oncoimmunology. 2018 Oct 16;8(1):e1514921. doi: 10.1080/2162402X.2018.1514921

Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol. 2022 Apr 19;12:818447. doi: 10.3389/fonc.2022.818447

Soroceanu L, Cobbs CS. Is HCMV a tumor promoter? Virus Res. 2011 May;157(2):193-203. doi: 10.1016/j.virusres.2010.10.026

Melnick M, Sedghizadeh PP, Allen CM, Jaskoll T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp Mol Pathol. 2012 Feb;92(1):118-25. doi: 10.1016/j.yexmp.2011.10.011

Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002 Jun 15;62(12):3347-50.

Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol. 2008 Jul;116(1):79-86. doi: 10.1007/s00401-008-0359-1

Geder L, Sanford EJ, Rohner TJ, Rapp F. Cytomegalovirus and cancer of the prostate: in vitro transformation of human cells. Cancer Treat Rep. 1977 Mar-Apr;61(2):139-46.

Sanford EJ, Geder L, Laychock A, Rohner TJ Jr, Rapp F. Evidence for the association of cytomegalovirus with carcinoma of the prostate. J Urol. 1977 Nov;118(5):789-92. doi: 10.1016/s0022-5347(17)58194-x

Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010 Dec;10(12):878-89. doi: 10.1038/nrc2961

Shen Y, Zhu H, Shenk T. Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate "hit-and-run" oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA. 1997 Apr 1;94(7):3341-5. doi: 10.1073/pnas.94.7.3341

Cinatl J Jr, Vogel JU, Kotchetkov R, Wilhelm Doerr H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev. 2004 Feb;28(1):59-77. doi: 10.1016/j.femsre.2003.07.005

Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol. 2003 Sep;170(3):998-1002. doi: 10.1097/01.ju.0000080263.46164.97

Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet. 2002 Nov 16;360(9345):1557-63. doi: 10.1016/S0140-6736(02)11524-8

Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR. Lack of association of herpesviruses with brain tumors. J Neurovirol. 2006 Apr;12(2):90-9. doi: 10.1080/13550280600654573

Lau SK, Chen YY, Chen WG, Diamond DJ, Mamelak AN, Zaia JA, Weiss LM. Lack of association of cytomegalovirus with human brain tumors. Mod Pathol. 2005 Jun;18(6):838-43. doi: 10.1038/modpathol.3800352

Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GA, Smit MJ. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA. 2006 Aug 29;103(35):13068-73. doi: 10.1073/pnas.0604433103

Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Söderberg-Nauclér C, Smit MJ. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal. 2010 Aug;3(133):ra58. doi: 10.1126/scisignal.2001180

Sorg G, Stamminger T. Strong conservation of the constitutive activity of the IE1/2 transcriptional control region in wild-type strains of human cytomegalovirus. J Gen Virol. 1998 Dec;79 ( Pt 12):3039-47. doi: 10.1099/0022-1317-79-12-3039

Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH. Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res. 2008 Feb 1;68(3):724-30. doi: 10.1158/0008-5472.CAN-07-2291

Park JJ, Kim YE, Pham HT, Kim ET, Chung YH, Ahn JH. Functional interaction of the human cytomegalovirus IE2 protein with histone deacetylase 2 in infected human fibroblasts. J Gen Virol. 2007 Dec;88(Pt 12):3214-3223. doi: 10.1099/vir.0.83171-0

Kluiver J, Kroesen B, Poppema S, van den Berg A. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia. 2006 Nov;20(11):1931-6. doi: 10.1038/sj.leu.2404387

Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009 Jun;23(11):1327-37. doi: 10.1101/gad.1777409

Popkin DL, Watson MA, Karaskov E, Dunn GP, Bremner R, Virgin HW 4th. Murine cytomegalovirus paralyzes macrophages by blocking IFN gamma-induced promoter assembly. Proc Natl Acad Sci USA. 2003 Nov;100(24):14309-14. doi: 10.1073/pnas.1835673100

Wehinger J, Gouilleux F, Groner B, Finke J, Mertelsmann R, Weber-Nordt RM. IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS Lett. 1996 Oct 7;394(3):365-70. doi: 10.1016/0014-5793(96)00990-8

Spencer JV, Cadaoas J, Castillo PR, Saini V, Slobedman B. Stimulation of B lymphocytes by cmvIL-10 but not LAcmvIL-10. Virology. 2008 Apr 25;374(1):164-169. doi: 10.1016/j.virol.2007.11.031

Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB. The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res. 2008 Dec 15;14(24):8228-35. doi: 10.1158/1078-0432.CCR-08-1329

Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008 May;6(5):675-84. doi: 10.1158/1541-7786.MCR-07-2180

Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009 Oct;27(10):2383-92. doi: 10.1002/stem.185

Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 2010 Jan;9(1):67-78. doi: 10.1158/1535-7163.MCT-09-0734

Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME, Schall TJ. Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol. 2002 Feb;76(3):1285-92. doi: 10.1128/jvi.76.3.1285-1292.2002

Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci. 2007 Dec;10(12):1544-53. doi: 10.1038/nn2015

O’Farrell AM, Liu Y, Moore KW, Mui AL. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J. 1998 Feb 16;17(4):1006-18. doi: 10.1093/emboj/17.4.1006

Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006 Dec 1;66(23):11238-46. doi: 10.1158/0008-5472.CAN-06-1278

Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A, Parada LF. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 2009 Jan 6;15(1):45-56. doi: 10.1016/j.ccr.2008.12.006

Luo MH, Schwartz PH, Fortunato EA. Neonatal neural progenitor cells and their neuronal and glial cell derivatives are fully permissive for human cytomegalovirus infection. J Virol. 2008 Oct;82(20):9994-10007. doi: 10.1128/JVI.00943-08

Odeberg J, Wolmer N, Falci S, Westgren M, Sundtröm E, Seiger A, Söderberg-Nauclér C. Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes. J Neurosci Res. 2007 Feb 15;85(3):583-93. doi: 10.1002/jnr.21144

Soroceanu L, Akhavan A, Cobbs CS. Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature. 2008 Sep 18;455(7211):391-5. doi: 10.1038/nature07209

Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol. 2011 Jun;103(2):231-8. doi: 10.1007/s11060-010-0383-6

Söderberg-Nauclér C. HCMV microinfections in inflammatory diseases and cancer. J Clin Virol. 2008 Mar;41(3):218-23. doi: 10.1016/j.jcv.2007.11.009

Ranganathan P, Clark PA, Kuo JS, Salamat MS, Kalejta RF. Significant association of multiple human cytomegalovirus genomic Loci with glioblastoma multiforme samples. J Virol. 2012 Jan;86(2):854-64. doi: 10.1128/JVI.06097-11

Lisyaniy AN. [Antibodies to cytomegalovirus in blood serum and virus pp65 in neoplastic cells of patients with brain tumors]. Onkologiya. 2013;15(2):108-112. Russian.

Rahbar A, Stragliotto G, Orrego A, Peredo I, Taher C, Willems J, Söderberg-Naucler C. Low levels of Human Cytomegalovirus Infection in Glioblastoma multiforme associates with patient survival; -a case-control study. Herpesviridae. 2012 Mar 16;3:3. doi: 10.1186/2042-4280-3-3

Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjörnsson B, FuskevÅg OM, Segerström L, Nordenskjöld M, Siesjö P, Kogner P, Johnsen JI, Söderberg-Nauclér C. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest. 2011 Oct;121(10):4043-55. doi: 10.1172/JCI57147

Johnsen JI, Baryawno N, Söderberg-Nauclér C. Is human cytomegalovirus a target in cancer therapy? Oncotarget. 2011 Dec;2(12):1329-38. doi: 10.18632/oncotarget.383

Söderberg-Nauclér C, Johnsen JI. Cytomegalovirus infection in brain tumors: A potential new target for therapy? Oncoimmunology. 2012 Aug 1;1(5):739-740. doi: 10.4161/onci.19441

Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, Fiallos E, James CD, Cobbs CS. Cidofovir: a novel antitumor agent for glioblastoma. Clin Cancer Res. 2013 Dec 1;19(23):6473-83. doi: 10.1158/1078-0432.CCR-13-1121

Stragliotto G, Rahbar A, Solberg NW, Lilja A, Taher C, Orrego A, Bjurman B, Tammik C, Skarman P, Peredo I, Söderberg-Nauclér C. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer. 2013 Sep 1;133(5):1204-13. doi: 10.1002/ijc.28111

Söderberg-Naucler C, Peredo I, Rahbar A, Hansson F, Nordlund A, Stragliotto G. Use of Cox regression with treatment status as a time-dependent covariate to re-analyze survival benefit excludes immortal time bias effect in patients with glioblastoma who received prolonged adjuvant treatment with valganciclovir. Int J Cancer. 2014 Jul 1;135(1):248-9. doi: 10.1002/ijc.28663

Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol. 2011 Jun;103(2):231-8. doi: 10.1007/s11060-010-0383-6

Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R. Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol Cell Biol. 2012 Oct;90(9):872-80. doi: 10.1038/icb.2012.19

Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. 2014 May 15;20(10):2684-94. doi: 10.1158/1078-0432.CCR-13-3268

Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, Jones L, Crough T, Dasari V, Klein K, Smalley A, Alexander H, Walker DG, Khanna R. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014 Jul 1;74(13):3466-76. doi: 10.1158/0008-5472.CAN-14-0296

Smith C, Lineburg KE, Martins JP, Ambalathingal GR, Neller MA, Morrison B, Matthews KK, Rehan S, Crooks P, Panikkar A, Beagley L, Le Texier L, Srihari S, Walker D, Khanna R. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. J Clin Invest. 2020 Nov 2;130(11):6041-6053. doi: 10.1172/JCI138649

Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. 2014 May 15;20(10):2684-94. doi: 10.1158/1078-0432.CCR-13-3268

Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ, Norberg PK, Herndon JE 2nd, Healy P, Congdon KL, Gedeon PC, Campbell OC, Swartz AM, Riccione KA, Yi JS, Hossain-Ibrahim MK, Saraswathula A, Nair SK, Dunn-Pirio AM, Broome TM, Weinhold KJ, Desjardins A, Vlahovic G, McLendon RE, Friedman AH, Friedman HS, Bigner DD, Fecci PE, Mitchell DA, Sampson JH. Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. Cancer Res. 2018 Jan 1;78(1):256-264. doi: 10.1158/0008-5472.CAN-17-0469

Ma HL, Whitters MJ, Konz RF, Senices M, Young DA, Grusby MJ, Collins M, Dunussi-Joannopoulos K. IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. J Immunol. 2003 Jul 15;171(2):608-15. doi: 10.4049/jimmunol.171.2.608

Dhanji S, Teh HS. IL-2-activated CD8+CD44high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells. J Immunol. 2003 Oct 1;171(7):3442-50. doi: 10.4049/jimmunol.171.7.3442

Tietze JK, Wilkins DE, Sckisel GD, Bouchlaka MN, Alderson KL, Weiss JM, Ames E, Bruhn KW, Craft N, Wiltrout RH, Longo DL, Lanier LL, Blazar BR, Redelman D, Murphy WJ. Delineation of antigen-specific and antigen-nonspecific CD8(+) memory T-cell responses after cytokine-based cancer immunotherapy. Blood. 2012 Mar 29;119(13):3073-83. doi: 10.1182/blood-2011-07-369736

Published

2022-09-29

How to Cite

Lisianyi, M. I., Klyuchnikova, A. I., Lisianyi, O. M., Belska, L. M., Kot, L. A., & Stanetska, D. M. (2022). Cytomegalovirus infection of brain tumors and CMV immunotherapy. Ukrainian Neurosurgical Journal, 28(3), 25–32. https://doi.org/10.25305/unj.258544

Issue

Section

Original articles