Modern surgical technologies management of malignant brain gliomas
DOI:
https://doi.org/10.25305/unj.256530Keywords:
brain gliomas, treatment standards, neuronavigation, laser technologies, multimodal neuroimagingAbstract
The authors presented the review of effective methods of preoperative multimodal neuroimaging, innovative navigation and laser technologies for targeted controlled resection of brain tumors. The issues of modern requirements for surgical treatment of malignant brain gliomas were considered. The advantages of clinical application of individualized treatment strategy to ensure the effectiveness of neurosurgical interventions in brain gliomas and prospects for further development of surgical technologies in neuro-oncology were also described.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313. PMID: 30207593.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551
Apuzzo ML. Modernity and the emerging futurism in neurosurgery. J Clin Neurosci. 2000 Mar;7(2):85-7. doi: 10.1054/jocn.1999.0182
Ganau L, Paris M, Ligarotti GK, Ganau M. Management of Gliomas: Overview of the Latest Technological Advancements and Related Behavioral Drawbacks. Behav Neurol. 2015; 2015:862634. doi: 10.1155/2015/862634
Cho J, Rahimpour S, Cutler A, Goodwin CR, Lad SP, Codd P. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg. 2020 Jul;139:186-195. doi: 10.1016/j.wneu.2020.04.043
González-Darder JM, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, Roldán P. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010 Feb;28(2):E5. doi: 10.3171/2009.11.FOCUS09234
Chuvashova O.J., Rozumenko V.D. Efficiency presurgical fMRI definitions of zone of impellent activation of cortecs of hemispheres of the big brain in the prevention of motor infringements at surgery of intrabrain tumours. Ukrainian neurosurgical journal. 2009 Dec; 4:69-73. doi: 10.25305/unj.108016
Rozumenko V.D., Chuvashova O.Yu., Ruditsa V.I., Rozumenko A.V. MR-tractography in image-guide surgery of brain tumors. Ukrainian neurosurgical journal. 2011 Jun; 2:65-69. doi: 10.25305/unj.57895
Makeev SS, Rozumenko VD, Chuvashova OYu, Rozumenko AV. The capabilities of simultaneous use of SPECT and MRI findings at removal of brain tumors using neuronavigation. Ukrainian radiological journal. 2010;18(3):307-311.
Rozumenko V.D., Rozumenko A.V. Multimodal neuronavigation using in surgery of brain tumors. Ukrainian neurosurgical journal. 2010 Dec; 4:51-57. doi: 10.25305/unj.90150
Rozumenko V.D., Rozumenko A.V., Yavorskyi A.A., Bobryk I.S. Multimodal neuronavigation in preoperative planning and intraoperative orientation in brain tumors surgery. Ukrainian neurosurgical journal. 2014 Dec; 4:23-31. doi: 10.25305/unj.46598
Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev. 2014 Jan 28;2014(1):CD009685. doi: 10.1002/14651858
Noh T, Mustroph M, Golby AJ. Intraoperative Imaging for High-Grade Glioma Surgery. Neurosurg Clin N Am. 2021 Jan;32(1):47-54. doi: 10.1016/j.nec.2020.09.003
Schipmann S, Schwake M, Suero Molina E, Stummer W. Markers for Identifying and Targeting Glioblastoma Cells during Surgery. J Neurol Surg A Cent Eur Neurosurg. 2019 Nov;80(6):475-487. doi: 10.1055/s-0039-1692976
Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol. 2016 Nov;130(2):269-282. doi: 10.1007/s11060-016-2110-4
Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 2011 Oct;12(11):1062-70. doi: 10.1016/S1470-2045(11)70130-9
Bu LH, Zhang J, Lu JF, Wu JS. Glioma surgery with awake language mapping versus generalized anesthesia: a systematic review. Neurosurg Rev. 2021 Aug;44(4):1997-2011. doi: 10.1007/s10143-020-01418-9
Clavreul A, Aubin G, Delion M, Lemée JM, Ter Minassian A, Menei P. What effects does awake craniotomy have on functional and survival outcomes for glioblastoma patients? J Neurooncol. 2021 Jan;151(2):113-121. doi: 10.1007/s11060-020-03666-7
Grabowski MM, Otvos B, Mohammadi AM. Stereotactic Laser Ablation of Glioblastoma. Neurosurg Clin N Am. 2021 Jan;32(1):105-115. doi: 10.1016/j.nec.2020.08.006
Montemurro N, Anania Y, Cagnazzo F, Perrini P. Survival outcomes in patients with recurrent glioblastoma treated with Laser Interstitial Thermal Therapy (LITT): A systematic review. Clin Neurol Neurosurg. 2020 Aug;195:105942. doi: 10.1016/j.clineuro.2020.105942
Jamshidi AM, Eichberg DG, Komotar RJ, Ivan M. Safety Analysis of Bilateral Laser Interstitial Thermal Therapy for Treatment of Butterfly Glioma. World Neurosurg. 2020 Dec;144:e156-e163. doi: 10.1016/j.wneu.2020.08.053
Vega RA, Traylor JI, Patel R, Muir M, Bastos DCA, Prabhu SS. Combined Surgical Resection and Laser Interstitial Thermal Therapy for Glioblastoma: Technical Note. J Neurol Surg A Cent Eur Neurosurg. 2020 Jul;81(4):348-354. doi: 10.1055/s-0040-1709163
Rozumenko V. D., Semenova V. M., Othman, O. The brain and glial tumors tissue morphology changes under the highly energetic radiation of CO2 and Nd-YAG lasers influence. Ukrainian Neurosurgical Journal, 2004;3:37–42.
Rozumenko A, Kliuchka V, Rozumenko V, Semenova V, Kolesnyk S, Fedorenko Z. Image-guided resection of glioblastoma in eloquent brain areas facilitated by laser surface thermal therapy: clinical outcomes and long-term results. Neurosurg Rev. 2018 Oct;41(4):1045-1052. doi: 10.1007/s10143-018-0948-y
Frenster JD, Desai S, Placantonakis DG. In vitro evidence for glioblastoma cell death in temperatures found in the penumbra of laser-ablated tumors. Int J Hyperthermia. 2020 Jul;37(2):20-26. doi: 10.1080/02656736.2020.1774082
Elder JB, Huntoon K, Otero J, Kaya B, Hatef J, Eltobgy M, Lonser RR. Histologic findings associated with laser interstitial thermotherapy for glioblastoma multiforme. Diagn Pathol. 2019 Feb 15;14(1):19. doi: 10.1186/s13000-019-0794-4
Rozumenko VD. Laser surgery of brain tumor. Photobiology and photomedicine. 2010;3,4:16-21.
Böhringer HJ, Lankenau E, Stellmacher F, Reusche E, Hüttmann G, Giese A. Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir (Wien). 2009 May;151(5):507-17; discussion 517. doi: 10.1007/s00701-009-0248-y
Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008 Jul;63(1 Suppl 1):ONS21-8; discussion ONS28-9. doi: 10.1227/01.neu.0000335007.07381.df
Killory BD, Chang SW, Wait SD, Spetzler RF. Use of flexible hollow-core CO2 laser in microsurgical resection of CNS lesions: early surgical experience. Neurosurgery. 2010 Jun;66(6):1187-92. doi: 10.1227/01.NEU.0000369195.17553.F3
Ryan RW, Wolf T, Spetzler RF, Coons SW, Fink Y, Preul MC. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions. J Neurosurg. 2010 Feb;112(2):434-43. doi: 10.3171/2009.7.JNS09356
Rozumenko VD. Laser thermodestruction of brain tumor using multimodal neuronavigation. Photobiology and photomedicine. 2011;1:14-19.
Beaumont TL, Mohammadi AM, Kim AH, Barnett GH, Leuthardt EC. Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Glioblastoma of the Corpus Callosum. Neurosurgery. 2018 Sep 1;83(3):556-565. doi: 10.1093/neuros/nyx518
Kamath AA, Friedman DD, Akbari SHA, Kim AH, Tao Y, Luo J, Leuthardt EC. Glioblastoma Treated With Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy: Safety, Efficacy, and Outcomes. Neurosurgery. 2019 Apr 1;84(4):836-843. doi: 10.1093/neuros/nyy375
Pinto FC, Chavantes MC, Fonoff ET, Teixeira MJ. Treatment of colloid cysts of the third ventricle through neuroendoscopic Nd: YAG laser stereotaxis. Arq Neuropsiquiatr. 2009 Dec;67(4):1082-7. doi: 10.1590/s0004-282x2009000600023
Grunert P. From the idea to its realization: the evolution of minimally invasive techniques in neurosurgery. Minim Invasive Surg. 2013;2013:171369. doi: 10.1155/2013/171369. Epub 2013 Dec 17. PMID: 24455231; PMCID: PMC3877623.
Kutlay M, Kural C, Solmaz I, Tehli O, Temiz C, Daneyemez M, Izci Y. Fully Endoscopic Resection of Intra-Axial Brain Lesions Using Neuronavigated Pediatric Anoscope. Turk Neurosurg. 2016;26(4):491-9. doi: 10.5137/1019-5149.JTN.13789-14.0
Plaha P, Livermore LJ, Voets N, Pereira E, Cudlip S. Minimally invasive endoscopic resection of intraparenchymal brain tumors. World Neurosurg. 2014 Dec;82(6):1198-208. doi: 10.1016/j.wneu.2014.07.034. Epub 2014 Jul 29. Erratum in: World Neurosurg. 2019 Jul;127:736. PMID: 25084167
Bettag C, Hussein A, Behme D, Maragkou T, Rohde V, Mielke D. Endoscopic Fluorescence-Guided Resection Increases Radicality in Glioblastoma Surgery. Oper Neurosurg (Hagerstown). 2020 Jan 1;18(1):41-46. doi: 10.1093/ons/opz082
McKinnon C, Voets N, Livermore L, Obeidat M, Plaha P. Endoscopic Ipsilateral Interhemispheric Approach for Resection of Selected Deep Medial Brain Tumors. World Neurosurg. 2020 Dec;144:162-169. doi: 10.1016/j.wneu.2020.08.147
Coelho G, Kondageski C, Vaz-Guimarães Filho F, Ramina R, Hunhevicz SC, Daga F, Lyra MR, Cavalheiro S, Zymberg ST. Frameless image-guided neuroendoscopy training in real simulators. Minim Invasive Neurosurg. 2011 Jun;54(3):115-8. doi: 10.1055/s-0031-1283170
Kubben PL, van Santbrink H, ter Laak-Poort M, Weber JW, Vles JS, Granzen B, van Overbeeke JJ, Cornips EM. Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst. 2012 Aug;28(8):1171-80. doi: 10.1007/s00381-012-1815-8
Prada F, Del Bene M, Mattei L, Lodigiani L, DeBeni S, Kolev V, Vetrano I, Solbiati L, Sakas G, DiMeco F. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med. 2015 Apr;36(2):174-86. doi: 10.1055/s-0034-1385347
Yagi R, Kawabata S, Ikeda N, Nonoguchi N, Furuse M, Katayama Y, Kajimoto Y, Kuroiwa T. Intraoperative 5-aminolevulinic acid-induced photodynamic diagnosis of metastatic brain tumors with histopathological analysis. World J Surg Oncol. 2017 Sep 29;15(1):179. doi: 10.1186/s12957-017-1239-8
Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg. 2011 Jul;115(1):11-7. doi: 10.3171/2011.2.JNS101451
Cordova JS, Gurbani SS, Holder CA, Olson JJ, Schreibmann E, Shi R, Guo Y, Shu HK, Shim H, Hadjipanayis CG. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol. 2016 Jun;18(3):454-62. doi: 10.1007/s11307-015-0900-2
Hauser SB, Kockro RA, Actor B, Sarnthein J, Bernays RL. Combining 5-Aminolevulinic Acid Fluorescence and Intraoperative Magnetic Resonance Imaging in Glioblastoma Surgery: A Histology-Based Evaluation. Neurosurgery. 2016 Apr;78(4):475-83. doi: 10.1227/NEU.0000000000001035
Schupper AJ, Hadjipanayis C. Use of Intraoperative Fluorophores. Neurosurg Clin N Am. 2021 Jan;32(1):55-64. doi: 10.1016/j.nec.2020.08.001
Eyüpoglu IY, Hore N, Merkel A, Buslei R, Buchfelder M, Savaskan N. Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget. 2016 May 3;7(18):25755-68. doi: 10.18632/oncotarget.8367
Labuschagne JJ. 5-Aminolevulinic Acid-Guided Surgery for Recurrent Supratentorial Pediatric Neoplasms. World Neurosurg. 2020 Sep;141:e763-e769. doi: 10.1016/j.wneu.2020.06.019
Bidnenko VN, Sigal VL, Rozumenko VD Theoretical estimations of the area of destruction in brain tumors under photodynamic therapy. Proc. Spie. 200;5(4162):175-181.
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. 2019 Feb;141(3):595-607. doi: 10.1007/s11060-019-03103-4
Kaneko S, Fujimoto S, Yamaguchi H, Yamauchi T, Yoshimoto T, Tokuda K. Photodynamic Therapy of Malignant Gliomas. Prog Neurol Surg. 2018;32:1-13. doi: 10.1159/000469675
Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, Vedunova MV, Krysko DV. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer. 2019 Dec 16;7(1):350. doi: 10.1186/s40425-019-0826-3
Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol Med Chir (Tokyo). 2016;56(4):151-7. doi: 10.2176/nmc.ra.2015-0296
Fujita Y, Sasayama T, Tanaka K, Kyotani K, Nagashima H, Kohta M, Kimura H, Fujita A, Kohmura E. DWI for Monitoring the Acute Response of Malignant Gliomas to Photodynamic Therapy. AJNR Am J Neuroradiol. 2019 Dec;40(12):2045-2051. doi: 10.3174/ajnr.A6300
de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev. 2017 Oct;9(5):761-773. doi: 10.1007/s12551-017-0293-3
Eaton DJ, Gonzalez R, Duck S, Keshtgar M. Radiation protection for an intra-operative X-ray device. Br J Radiol. 2011 Nov;84(1007):1034-9. doi: 10.1259/bjr/29466902
Herskind C, Griebel J, Kraus-Tiefenbacher U, Wenz F. Sphere of equivalence—a novel target volume concept for intraoperative radiotherapy using low-energy X rays. Int J Radiat Oncol Biol Phys. 2008 Dec 1;72(5):1575-81. doi: 10.1016/j.ijrobp.2008.08.009
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Volodymyr D. Rozumenko , Artem V. Rozumenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.