Model of spinal cord lateral hemi-excision at the lower thoracic level for the tasks of reconstructive and experimental neurosurgery

Authors

DOI:

https://doi.org/10.25305/unj.234154

Keywords:

lateral spinal cord hemisection, lateral spinal cord hemiexcision, autogenous restoration of motor function, post-traumatic spasticity

Abstract

Purpose. To test the model of spinal cord lateral hemiexcision in young rats.

Materials and methods. Animals ‒ male rats (age about 1 month, body weight about 50 g, inbred derivatives of the Wistar line); the number of experimental groups is: 1) lateral spinal cord hemisection at the level of segments about T12–T13 (Sect; n=11); 2) lateral spinal cord hemiexcision about 1 mm long at the similar level (Exc; n=8). Assessment of motor Function Index (FI) and the Spasticity Index (SI) of the paretic hindlimb was carried out using the Basso–Beattie–Bresnahan (BBB) scale and Ashworth scale, respectively, in our technical modifications. The non-inclusion criteria: the BBB score above 9 points of FI for the ipsilateral hindlimb in a week after injury ‒and / or BBB score less than or equal to 14 points of FI of the contralateral hindlimb during a long follow-up period (in general, 2 animals in the Sect group, 3 animals ‒ in the Exc group). Asymptotic differences in the timing of testing between subgroups and groups were revealed during the first three weeks of follow-up. Interpolation reproduction of individual values of FI and SI was used in exceptional cases. The total follow-up period was 5 months. Statistical analysis was performed using the Mann-Whitney U Test, Wilcoxon Matched Pairs Test, Spearman’s Rank Order Correlation. For pathomorphological study, the method of silver impregnation of the spinal cord longitudinal sections of the Exc group animals obtained in 5 months after the simulation of injury was used.

Results. One week after injury, the FI in the Sect group was 5.9±1.1 according to BBB points, a statistically significant increase in the FI lasted for the first 3 weeks (p<0.05; Wilcoxon Matched Pairs Test), the FI maximum in the group was 10.1±1.1 BBB points, and the FI value at the end of the study was 9.5±1.0 BBB points. In the Exc group, 1 week after injury, the FI was 0.9±0.5 BBB points, during the next week it reached the actual maximum (1.9±0.7 BBB points), by the end of the 5th month it significantly decreased to 0.8±0.3 BBB points (p<0.05; Wilcoxon Matched Pairs Test). One week after injury, the SI value in the Sect group was 0.3±0.1 points according to Ashworth scale, in the Exc group ‒ 0.7±0.1 Ashworth points, a significant increase (p<0.05; Wilcoxon Matched Pairs Test) in SI in the Sect group was noted during the 2nd week and the 2nd month, in the Exc group ‒ during the 2nd and 6th week, as well as the 3rd and 5th month after injury. The SI final and maximal score for the Sect group was 0.8±0.2 Ashworth points, and for the Exc group ‒ 3.6±0.3 Ashworth points. For both groups, there was no correlation between the mean FI value and a significant positive correlation of the mean SI value with the value of the follow-up period (p<0.05; Spearman’s Rank Order Correlation), as well as the absence of correlation between the mean FI and SI values during the total follow-up period. A significant negative correlation (p<0.05; Spearman’s Rank Order Correlation) between individual FI and SI values was found after 1 and 4 weeks, 3 and 5 months after the injury for the Sect group, as well as after 5, 7, 8 weeks and after 3 and 4 months for the Exc group. At all periods of follow-up, the difference in both FI and SI mean values of both groups was significant (p<0.05; the Mann-Whitney U Test).

Conclusions. The studied model of spinal cord injury in young rats is the means of choice for testing solid neural transplantation means for the spinal cord injury restorative treatment. The interpretation of data obtained using the BBB scale on models of lateral half spinal cord injury should be carried out with caution, and the methodology for verifying spasticity requires significant improvement. We recommend that the optimal timing for the FI and SI monitoring after lateral half spinal cord injury is 7 days, 14 days and in 1, 2, 3, 4, 5, 6, and 7 months.

Author Biographies

Volodymyr V.  Medvediev, Bogomolets National Medical University, Kyiv; Bogomoletz Institute of Physiology, Kyiv

Department of Neurosurgery; Department of Sensory Signalling

Ibrahim M. Abdallah, Bogomolets National Medical University, Kyiv

Department of Neurosurgery

Natalya G. Draguntsova, Romodanov Neurosurgery Institute, Kyiv

Laboratory of Experimental Neurosurgery

Sergiy I. Savosko, Bogomolets National Medical University, Kyiv

Department of Histology and Embryology

Viktoria V. Vaslovych , Romodanov Neurosurgery Institute, Kyiv

Neuropathomorphology Department

Vitaliy I. Tsymbaliuk, Bogomolets National Medical University, Kyiv; Romodanov Neurosurgery Institute, Kyiv

Department of Neurosurgery; Restorative and Functional Neurosurgery Department

Nana V. Voitenko, Bogomoletz Institute of Physiology, Kyiv

Department of Sensory Signalling

References

1. Boakye M, Leigh BC, Skelly AC. Quality of life in persons with spinal cord injury: comparisons with other populations. J Neurosurg Spine. 2012 Sep;17(1 Suppl):29-37. [CrossRef] [PubMed]

2. DeVivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012 May;50(5):365-72. [CrossRef] [PubMed]

3. Geyh S, Ballert C, Sinnott A, Charlifue S, Catz A, D'Andrea Greve JM, Post MW. Quality of life after spinal cord injury: a comparison across six countries. Spinal Cord. 2013 Apr;51(4):322-6. [CrossRef] [PubMed]

4. Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012 Nov;50(11):803-11. [CrossRef] [PubMed]

5. Pretz CR, Kozlowski AJ, Chen Y, Charlifue S, Heinemann AW. Trajectories of Life Satisfaction After Spinal Cord Injury. Arch Phys Med Rehabil. 2016 Oct;97(10):1706-1713.e1. [CrossRef] [PubMed]

6. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 Jan;18(1):56-87. [CrossRef] [PubMed] [PubMed Central]

7. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014 Sep 23;6:309-31. [CrossRef] [PubMed] [PubMed Central]

8. Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, Osorio-Fonseca E, Park KB. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018 May;113:e345-e363. [CrossRef] [PubMed]

9. Krueger H, Noonan VK, Trenaman LM, Joshi P, Rivers CS. The economic burden of traumatic spinal cord injury in Canada. Chronic Dis Inj Can. 2013 Jun;33(3):113-22. English, French. [PubMed]

10. Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis. 2014 Feb;62:338-53. [CrossRef] [PubMed]

11. Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol (Oxf). 2007 Feb;189(2):171-80. [CrossRef] [PubMed]

12. Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009 Jul;23(7):651-8. [CrossRef] [PubMed]

13. Hwang M, Zebracki K, Chlan KM, Vogel LC. Longitudinal changes in medical complications in adults with pediatric-onset spinal cord injury. J Spinal Cord Med. 2014 Mar;37(2):171-8. [CrossRef] [PubMed] [PubMed Central]

14. Holtz KA, Lipson R, Noonan VK, Kwon BK, Mills PB. Prevalence and Effect of Problematic Spasticity After Traumatic Spinal Cord Injury. Arch Phys Med Rehabil. 2017 Jun;98(6):1132-1138. [CrossRef] [PubMed]

15. Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma. 1997 Aug;14(8):517-37. [CrossRef] [PubMed]

16. Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sørensen JC, Jensen TS, Werhagen L. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014 Jan;15(1):40-8. [CrossRef] [PubMed]

17. Hou S, Rabchevsky AG. Autonomic consequences of spinal cord injury. Compr Physiol. 2014 Oct;4(4):1419-53. [CrossRef] [PubMed]

18. Savage KE, Oleson CV, Schroeder GD, Sidhu GS, Vaccaro AR. Neurogenic Fever after Acute Traumatic Spinal Cord Injury: A Qualitative Systematic Review. Global Spine J. 2016 Sep;6(6):607-14. [CrossRef] [PubMed] [PubMed Central]

19. Partida E, Mironets E, Hou S, Tom VJ. Cardiovascular dysfunction following spinal cord injury. Neural Regen Res. 2016 Feb;11(2):189-94. [CrossRef] [PubMed] [PubMed Central]

20. Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol. 2019 Oct;320:113009. [CrossRef] [PubMed] [PubMed Central]

21. Wyndaele JJ. The management of neurogenic lower urinary tract dysfunction after spinal cord injury. Nat Rev Urol. 2016 Dec;13(12):705-714. [CrossRef] [PubMed]

22. Hamid R, Averbeck MA, Chiang H, Garcia A, Al Mousa RT, Oh SJ, Patel A, Plata M, Del Popolo G. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury. World J Urol. 2018 Oct;36(10):1517-1527. [CrossRef] [PubMed]

23. New PW, Currie KE. Development of a comprehensive survey of sexuality issues including a self-report version of the International Spinal Cord Injury sexual function basic data sets. Spinal Cord. 2016 Aug;54(8):584-91. [CrossRef] [PubMed]

24. Stoffel JT, Van der Aa F, Wittmann D, Yande S, Elliott S. Fertility and sexuality in the spinal cord injury patient. World J Urol. 2018 Oct;36(10):1577-1585. [CrossRef] [PubMed]

25. January AM, Zebracki K, Chlan KM, Vogel LC. Mental health and risk of secondary medical complications in adults with pediatric-onset spinal cord injury. Top Spinal Cord Inj Rehabil. 2014 Winter;20(1):1-12. [CrossRef] [PubMed] [PubMed Central]

26. Lim SW, Shiue YL, Ho CH, Yu SC, Kao PH, Wang JJ, Kuo JR. Anxiety and Depression in Patients with Traumatic Spinal Cord Injury: A Nationwide Population-Based Cohort Study. PLoS One. 2017 Jan 12;12(1):e0169623. [CrossRef] [PubMed] [PubMed Central]

27. Lee SJ, Nam TW, Kim CH, Hwang JM. Knowledge and attitude of nonpsychiatric physicians regarding suicide in spinal cord injury patients and need for structured psychiatric education for suicide prevention: A prospective survey pilot study. Medicine (Baltimore). 2019 Mar;98(11):e14901. [CrossRef] [PubMed] [PubMed Central]

28. Wan FJ, Chien WC, Chung CH, Yang YJ, Tzeng NS. Association between traumatic spinal cord injury and affective and other psychiatric disorders-A nationwide cohort study and effects of rehabilitation therapies. J Affect Disord. 2020 Mar 15;265:381-388. [CrossRef] [PubMed]

29. Wu J, Stoica BA, Luo T, Sabirzhanov B, Zhao Z, Guanciale K, Nayar SK, Foss CA, Pomper MG, Faden AI. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle. 2014;13(15):2446-58. [CrossRef] [PubMed] [PubMed Central]

30. Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden AI. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci. 2014 Aug 13;34(33):10989-1006. [CrossRef] [PubMed] [PubMed Central]

31. Craig A, Guest R, Tran Y, Middleton J. Cognitive Impairment and Mood States after Spinal Cord Injury. J Neurotrauma. 2017 Mar 15;34(6):1156-1163. [CrossRef] [PubMed]

32. Sachdeva R, Gao F, Chan CCH, Krassioukov AV. Cognitive function after spinal cord injury: A systematic review. Neurology. 2018 Sep 25;91(13):611-621. [CrossRef] [PubMed] [PubMed Central]

33. Sachdeva R, Nightingale TE, Krassioukov AV. The Blood Pressure Pendulum following Spinal Cord Injury: Implications for Vascular Cognitive Impairment. Int J Mol Sci. 2019 May 18;20(10):2464. [CrossRef] [PubMed] [PubMed Central]

34. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery. 2017 Mar 1;80(3S):S9-S22. [CrossRef] [PubMed]

35. Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Front Cell Neurosci. 2018 Jan 11;11:430. [CrossRef] [PubMed] [PubMed Central]

36. Lu X, Perera TH, Aria AB, Callahan LAS. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol. 2018 Jul 27;10:37-49. [CrossRef] [PubMed] [PubMed Central]

37. Wang Y, Tan H, Hui X. Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. Biomed Res Int. 2018 Apr 1;2018:7848901. [CrossRef] [PubMed] [PubMed Central]

38. Cizkova D, Murgoci AN, Cubinkova V, Humenik F, Mojzisova Z, Maloveska M, Cizek M, Fournier I, Salzet M. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res. 2020 Jan;45(1):134-143. [CrossRef] [PubMed]

39. Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res. 2019 Aug;14(8):1352-1363. [CrossRef] [PubMed] [PubMed Central]

40. Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater. 2019 Apr 1;88:57-77. [CrossRef] [PubMed]

41. Shah M, Peterson C, Yilmaz E, Halalmeh DR, Moisi M. Current advancements in the management of spinal cord injury: A comprehensive review of literature. Surg Neurol Int. 2020 Jan 3;11:2. [CrossRef] [PubMed] [PubMed Central]

42. Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X. Natural Polymers for Organ 3D Bioprinting. Polymers (Basel). 2018 Nov 16;10(11):1278. [CrossRef] [PubMed] [PubMed Central]

43. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001 Apr;2(4):263-73. [CrossRef] [PubMed]

44. Steeves JD. Bench to bedside: challenges of clinical translation. Prog Brain Res. 2015;218:227-39. [CrossRef] [PubMed]

45. Khorasanizadeh M, Yousefifard M, Eskian M, Lu Y, Chalangari M, Harrop JS, Jazayeri SB, Seyedpour S, Khodaei B, Hosseini M, Rahimi-Movaghar V. Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 2019 Feb 15:1-17. [CrossRef] [PubMed]

46. Belegu V, Oudega M, Gary DS, McDonald JW. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies. Neurosurg Clin N Am. 2007 Jan;18(1):143-68, xi. [CrossRef] [PubMed]

47. Deumens R, Koopmans GC, Joosten EA. Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol. 2005 Sep-Oct;77(1-2):57-89. [CrossRef] [PubMed]

48. Blesch A, Tuszynski MH. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 2009 Jan;32(1):41-7. [CrossRef] [PubMed]

49. Nishimura Y, Isa T. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol. 2012 May;235(1):152-61. [CrossRef] [PubMed]

50. Ghosh A, Haiss F, Sydekum E, Schneider R, Gullo M, Wyss MT, Mueggler T, Baltes C, Rudin M, Weber B, Schwab ME. Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci. 2010 Jan;13(1):97-104. [CrossRef] [PubMed]

51. Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. Elife. 2017 Jun 29;6:e23532. [CrossRef] [PubMed] [PubMed Central]

52. Zareen N, Shinozaki M, Ryan D, Alexander H, Amer A, Truong DQ, Khadka N, Sarkar A, Naeem S, Bikson M, Martin JH. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp Neurol. 2017 Nov;297:179-189. [CrossRef] [PubMed] [PubMed Central]

53. Deng J, Xie H, Chen Y, Peng Z, Zhao J, Zhou Y, Chen C, Zhang K. Comparative study of the reorganization in bilateral motor and sensory cortices after spinal cord hemisection in mice. Neuroreport. 2021 Jun 22. [CrossRef] [PubMed]

54. Brown AR, Martinez M. From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen Res. 2019 Dec;14(12):2054-2062. [CrossRef] [PubMed] [PubMed Central]

55. Tahayori B, Koceja DM. Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast. 2012;2012:964843. [CrossRef] [PubMed] [PubMed Central]

56. Fisher KM, Lilak A, Garner J, Darian-Smith C. Extensive somatosensory and motor corticospinal sprouting occurs following a central dorsal column lesion in monkeys. J Comp Neurol. 2018 Oct 15;526(15):2373-2387. [CrossRef] [PubMed] [PubMed Central]

57. Flynn JR, Graham BA, Galea MP, Callister RJ. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology. 2011 Apr;60(5):809-22. [CrossRef] [PubMed]

58. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol. 2019 Mar 22;10:282. [CrossRef] [PubMed] [PubMed Central]

59. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995 Feb;12(1):1-21. [CrossRef] [PubMed]

60. Barros Filho TE, Molina AE. Analysis of the sensitivity and reproducibility of the Basso, Beattie, Bresnahan (BBB) scale in Wistar rats. Clinics (Sao Paulo). 2008 Feb;63(1):103-8. [CrossRef] [PubMed] [PubMed Central]

61. Ung RV, Lapointe NP, Tremblay C, Larouche A, Guertin PA. Spontaneous recovery of hindlimb movement in completely spinal cord transected mice: a comparison of assessment methods and conditions. Spinal Cord. 2007 May;45(5):367-79. [CrossRef] [PubMed]

62. Mills CD, Hains BC, Johnson KM, Hulsebosch CE. Strain and model differences in behavioral outcomes after spinal cord injury in rat. J Neurotrauma. 2001 Aug;18(8):743-56. [CrossRef] [PubMed]

63. Webb AA, Muir GD. Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections. J Neurotrauma. 2002 Feb;19(2):239-56. [CrossRef] [PubMed]

64. Arvanian VL, Schnell L, Lou L, Golshani R, Hunanyan A, Ghosh A, Pearse DD, Robinson JK, Schwab ME, Fawcett JW, Mendell LM. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Exp Neurol. 2009 Apr;216(2):471-80. [CrossRef] [PubMed] [PubMed Central]

65. Filli L, Zörner B, Weinmann O, Schwab ME. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Brain. 2011 Aug;134(Pt 8):2261-73. [CrossRef] [PubMed]

66. Zhao YY, Yuan Y, Chen Y, Jiang L, Liao RJ, Wang L, Zhang XN, Ohtsu H, Hu WW, Chen Z. Histamine promotes locomotion recovery after spinal cord hemisection via inhibiting astrocytic scar formation. CNS Neurosci Ther. 2015 May;21(5):454-62. [CrossRef] [PubMed] [PubMed Central]

67. Lemmon VP, Ferguson AR, Popovich PG, Xu XM, Snow DM, Igarashi M, Beattie CE, Bixby JL; MIASCI Consortium. Minimum information about a spinal cord injury experiment: a proposed reporting standard for spinal cord injury experiments. J Neurotrauma. 2014 Aug 1;31(15):1354-61. [CrossRef] [PubMed] [PubMed Central]

68. Hoffman AM, Dow SW. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells. 2016 Jul;34(7):1709-29. [CrossRef] [PubMed]

69. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017 Apr 25;20(5):637-647. [CrossRef] [PubMed]

70. Dietz V, Schwab ME. From the Rodent Spinal Cord Injury Model to Human Application: Promises and Challenges. J Neurotrauma. 2017 May 1;34(9):1826-1830. [CrossRef] [PubMed]

71. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996 Apr;76(2):319-70. [CrossRef] [PubMed]

72. Kerezoudi E, Thomas PK. Influence of age on regeneration in the peripheral nervous system. Gerontology. 1999 Nov-Dec;45(6):301-6. [CrossRef] [PubMed]

73. Jaerve A, Schiwy N, Schmitz C, Mueller HW. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol. 2011 Oct;231(2):284-94. [CrossRef] [PubMed]

74. Geoffroy CG, Hilton BJ, Tetzlaff W, Zheng B. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Rep. 2016 Apr 12;15(2):238-46. [CrossRef] [PubMed] [PubMed Central]

75. Geoffroy CG, Meves JM, Zheng B. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neurosci Lett. 2017 Jun 23;652:41-49. [CrossRef] [PubMed] [PubMed Central]

76. Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol. 2020 Mar 25;8:190. [CrossRef] [PubMed] [PubMed Central]

77. Kopach O, Medvediev V, Krotov V, Borisyuk A, Tsymbaliuk V, Voitenko N. Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Sci Rep. 2017 Jul 19;7(1):5884. [CrossRef] [PubMed] [PubMed Central]

78. Tsymbaliuk V, Medvediev V, Semenova V, Grydina N, Senchyk Y, Velychko O, Dychko S, Vaslovych V. [The model of lateral spinal cord hemisection. Part I. The technical, pathomorphological, clinical and experimental peculiarities]. Ukrainian Neurosurgical Journal. 2016 Jun. 26;(2):18-27. Ukrainian. [CrossRef]

79. Tsymbaliuk V, Medvedev V, Grydina N, Senchyk Y, Suliy L, Tatarchuk M, Velychko O, Dychko S, Draguntsova N. [The model of spinal cord lateral hemisection. Part II. State of the neuromuscular system, syndrome of post-injury spasticity and chronic pain syndrome]. Ukrainian Neurosurgical Journal. 2016 Sep. 30;(3):9-17. Ukrainian. [CrossRef]

80. Tsymbalyuk VI, Medvedyev VV, Semenova VM, Grydina NY, Yaminskyi YY, Senchyk YY, Draguntsova NG, Rybachuk OA, Dychko SM, Petriv TI. [[Durable persistence of a biocompatible foreign body in a vertebral channel in open penetrating trauma of a spinal cord: clinico-experimental and pathomorphological peculiarities]. Klin Khir. 2016 Aug;(8):64-9. Ukrainian. [PubMed]

81. Tsymbaliuk VI, Medvediev VV, Senchyk YuYu, Grydina NYa, Draguntsova NG, Dychko SM. [Effect of olfactory bulb tissue transplantation in the course of the regeneration process in spinal cord injury in experiment]. Ukrainian Neurological Journal. 2016;(3):59-65. Ukrainian.

82. Tsymbalyuk VI, Medvedyev VV, Senchyk YuYu, Drahuntsova NH, Dychko SM. Vplyv transplantatsiyi tkanyny fetal'noyi nyrky na perebih reheneratsiynoho protsesu pry travmi spynnoho mozku v eksperymenti. Nauka i praktyka. 2016;(1-2):104-15. Ukrainian.

83. Tsymbaliuk V, Medvediev V, Semenova V, Grydina N, Iaminskiy I, Senchyk Y, Draguntsova N, Rybachuk O, Vaslovych V, Dychko S, Petriv T. [Clinical and pathomorphological features of penetrating spinal cord injury model with prolonged persistence of a foreign body in the vertebral canal]. Ukrainian Neurosurgical Journal. 2016 Dec. 17;(4):16-25. Ukrainian. [CrossRef]

84. Medvediev VV, Senchyk YuYu, Draguntsova NG, Dychko SM, Tsymbaliuk VI. [Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury]. Cell and Organ Transplantology. 2016;4(2):175-80. Ukrainian. [CrossRef]

85. Medvediev VV. [The effect of neurotransplantation of various allogeneic tissue types to motor function restore after experimental spinal cord injury]. Ukrainian Neurosurgical Journal. 2017 Mar. 17;(1):11-23. Ukrainian. [CrossRef]

86. Özkan ZE. Macro-anatomical investigations on the skeletons of mole-rat (Spalax leucodon Nordmann) III. Skeleton axiale. Vet. Arhiv. 2007;77(3):281-9.

87. Olude MA, Mustapha OA, Ogunbunmi TK, Olopade JO. The vertebral column, ribs, and sternum of the African giant rat (Cricetomys gambianus waterhouse). Scientific World Journal. 2013 Oct 28;2013:973537. [CrossRef] [PubMed] [PubMed Central]

88. Gilerovich EG, Moshonkina TR, Fedorova EA, Shishko TT, Pavlova NV, Gerasimenko YP, Otellin VA. Morphofunctional characteristics of the lumbar enlargement of the spinal cord in rats. Neurosci Behav Physiol. 2008 Oct;38(8):855-60. [CrossRef] [PubMed]

89. Moonen G, Satkunendrarajah K, Wilcox JT, Badner A, Mothe A, Foltz W, Fehlings MG, Tator CH. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent. J Neurotrauma. 2016 Feb 1;33(3):278-89. [CrossRef] [PubMed] [PubMed Central]

90. Gelderd JB, Chopin SF. The vertebral level of origin of spinal nerves in the rat. Anat Rec. 1977 May;188(1):45-7. [CrossRef] [PubMed]

91. Curless RG, Nelson MB, Brimmer F, Tellez C. Brain and spinal cord lesions in the newborn rat. Lab Anim. 1977 Oct;11(4):251-5. [CrossRef] [PubMed]

92. Tveten L. Spinal cord vascularity. IV. The spinal cord arteries in the rat. Acta Radiol Diagn (Stockh). 1976 Jul;17(4):385-98. [CrossRef] [PubMed]

93. Kozyavkin VI, Tsymbaliuk VI, Medvediev VV, Rybachuk OA, Draguntsova NG. [The effect of spontaneous locomotor activity restriction on the course of spasticity syndrome after spinal cord injury and NeuroGeltm associated with neural stem cells implantation]. Bukovinian Medical Herald. 2016;20(4):83-9. Ukrainian. [CrossRef]

94. Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K. Efficient testing of motor function in spinal cord injured rats. Brain Res. 2000 Nov 17;883(2):165-77. [CrossRef] [PubMed]

95. Dong HW, Wang LH, Zhang M, Han JS. Decreased dynorphin A (1-17) in the spinal cord of spastic rats after the compressive injury. Brain Res Bull. 2005 Oct 15;67(3):189-95. [CrossRef] [PubMed]

96. Lynn BO, Erwin A, Guy M, Herman B, Davide M, Ellen J, Anne C, Kaat D. Comprehensive quantification of the spastic catch in children with cerebral palsy. Res Dev Disabil. 2013 Jan;34(1):386-96. [CrossRef] [PubMed]

97. Peyronnard JM, Charron LF, Lavoie J, Messier JP. Motor, sympathetic and sensory innervation of rat skeletal muscles. Brain Res. 1986 May 14;373(1-2):288-302. [CrossRef] [PubMed]

98. Medvedyev VV. Vplyv transplantatsiyi klityn nyukhovoyi tsybulyny na protsesy reheneratsiyi spynnoho mozku pislya yoho travmatychnoho poshkodzhennya v eksperymenti. Ukrainian neurological journal. 2007;(4):93-101. Ukrainian.

99. Tsymbalyuk VI, Medvedyev VV. Vplyv transplantatsiyi syntetychnoho makroporystoho hidrohelyu ta klityn nyukhovoyi tsybulyny na protsesy reheneratsiyi spynnoho mozku pislya yoho travmatychnoho poshkodzhennya v eksperymenti. Zhurnal AMN Ukrayiny. 2008;14(1):74-93. Ukrainian.

100. Tsymbalyuk VI, Medvedyev VV. Vplyv transplantatsiyi klityn nyukhovoyi tsybulyny na vidnovni protsesy u spynnomu mozku pislya yoho eksperymental'noho travmatychnoho poshkodzhennya ta implantatsiyi syntetychnoho makroporystoho hidrohelyu. Ukrainian neurological journal. 2008;(2):73-83. Ukrainian.

101. Tsymbalyuk VI, Medvedev VV. Spinnoy mozg. Elegiya nadezhdy: Monografiya. Vinnitsa: Nova Kniga; 2010. Russian.

102. Tsymbalyuk VI, Medvedyev VV, Grydina NY, Senchyk YY, Таtarchuk MM, Draguntsova NG, Dychko SM, Petriv TI. [A simulation model of the open penetrating spinal cord trauma with durable persistence of biocompatible foreign body of the vertebral column channell. Syndrome of posttraumatic spasticity]. Klin Khir. 2016 Oct;(10):67-71. Ukrainian. [PubMed]

103. Tsymbaliuk VI, Medvediev VV, Senchyk YuYu, Grydina NYa, Tatarchuk MM, Draguntsova NG, Dychko SM. [Effect of olfactory bulb tissue transplantation in the course of the regeneration process in spinal cord injury in experiment]. Ukrainian Neurological Journal. 2016;(4):59-66. Ukrainian.

104. Tsymbaliuk VI, Medvediev VV, Rybachuk OA, Kozyavkin VI, Draguntsova NG. [The effect of implantation of NeuroGelTM used with xenogenic bone marrow stem cells on motor function recovery after experimental spinal cord injury]. International Neurological Journal. 2016;(6):13-9. Ukrainian. [CrossRef]

105. Medvediev VV. [The variability of the paretic limb function and spasticity correlation for various restorative process flow on the spinal cord injury model]. Hospital Surgery. 2017 Feb. 9;(4):21-6. Ukrainian. [CrossRef]

106. Tsymbaliuk VI, Medvediev VV, Rybachuk OA, Kozyavkin VI, Draguntsova NG. [The effect of NeurogelTM used with bone marrow stem cells implantation on the course of the spasticity syndrome after experimental spinal cord injury]. International Neurological Journal. 2016;(7):20-6. Ukrainian. [CrossRef]

107. Tsymbaliuk V, Medvediev V, Senchyk Y, Tatarchuk M, Draguntsova N, Dychko S. [Effect of fetal kidney tissue transplantation on the course of the spasticity and chronic pain syndrome after experimental spinal cord injury]. Med. Sci. of Ukr. 2017 Jun. 30;12(3-4):21-7. Ukrainian.

108. Tsymbalyuk VI, Medvedyev VV, Rybachuk OA, Kozyavkin VI, Draguntsova NG, Nesterenko DG. [Impact of xenotransplantation of neurogenic stem cells in complex with the tissue matrix NeuroGelTM on restoration of motor function of a rat spinal cord after experimental spinal trauma]. Klin Khir. 2017;(1):64-6. Ukrainian. [PubMed]

109. Tsymbaliuk VI, Medvediev VV, Vasiliev RG, Rybachuk OA, Kozyavkin VI, Draguntsova NG. [The effect of Neurogel with neural crest stem cells implantation on motor function recovery after experimental spinal cord injury]. Ukrainian Neurological Journal. 2017;(1):65-71. Ukrainian.

110. Tsymbalyuk VI, Medvedyev VV, Rybachuk OA, Kozyavkin VI, Draguntsova NG. [The impact of xenotransplantation of neurogenic stem cells in complex with the tissue matrix NeuroGelTM on the posttraumatic spasticity syndrome course in experiment]. Klin Khir. 2017;(3):44-7. Ukrainian. [PubMed]

111. Tsymbaliuk VI, Medvediev VV, Vasiliev RG, Rybachuk OA, Kozyavkin VI, Draguntsova NG. [The effect of NeurogelTM with xenogenic neural crest stem cells implantation on the course of spasticity syndrome after experimental spinal cord injury]. International Neurological Journal. 2017;(1):12-7. Ukrainian. [CrossRef]

112. Medvediev VV. [The influence of neurotransplantation with different allogenic tissues on the course of the spasticity and chronic pain syndrome after experimental spinal cord injury]. Ukrainian Neurosurgical Journal. 2017 Jun. 17;(2):11-2. [CrossRef]

113. Hsieh TH, Tsai JY, Wu YN, Hwang IS, Chen TI, Chen JJ. Time course quantification of spastic hypertonia following spinal hemisection in rats. Neuroscience. 2010 Apr 28;167(1):185-98. [CrossRef] [PubMed]

114. Pertici V, Amendola J, Laurin J, Gigmes D, Madaschi L, Carelli S, Marqueste T, Gorio A, Decherchi P. The use of poly(N-[2-hydroxypropyl]-methacrylamide) hydrogel to repair a T10 spinal cord hemisection in rat: a behavioural, electrophysiological and anatomical examination. ASN Neuro. 2013 May 30;5(2):149-66. [CrossRef] [PubMed] [PubMed Central]

115. Zhang Q, Yan S, You R, Kaplan DL, Liu Y, Qu J, Li X, Li M, Wang X. Multichannel silk protein/laminin grafts for spinal cord injury repair. J Biomed Mater Res A. 2016 Dec;104(12):3045-3057. [CrossRef] [PubMed]

116. Kolomiytsev AK, Chaykovskiy YuB, Tereshchenko TL. Bystryy metod impregnatsii azotnokislym serebrom elementov perifericheskoy nervnoy sistemy, prigodnyy dlya perafinovykh i tselloidinovykh srezov. Arkh. Anat. 1981;81(8):93-6. Russian.

117. Morawietz G, Ruehl-Fehlert C, Kittel B, Bube A, Keane K, Halm S, Heuser A, Hellmann J; RITA Group; NACAD Group. Revised guides for organ sampling and trimming in rats and mice--Part 3. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol. 2004 Jul;55(6):433-49. [CrossRef] [PubMed]

118. Watson C, Paxinos G, Kayalioglu G, Heise C. Atlas of the rat spinal cord. In: Watson C, Paxinos G, Kayalioglu G, editors. The spinal cord: a Christopher and Dana Reeve Foundation text and atlas. Amsterdam, The Netherlands: Elsevier/Academic Press; 2009. 238-306. [CrossRef]

119. Jaumard NV, Leung J, Gokhale AJ, Guarino BB, Welch WC, Winkelstein BA. Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma. Spine (Phila Pa 1976). 2015 Oct 15;40(20):E1084-92. [CrossRef] [PubMed]

120. Stavrakis AI, Loftin AH, Lord EL, Hu Y, Manegold JE, Dworsky EM, Scaduto AA, Bernthal NM. Current Animal Models of Postoperative Spine Infection and Potential Future Advances. Front Med (Lausanne). 2015 May 26;2:34. [CrossRef] [PubMed] [PubMed Central]

121. Majczyński H, Sławińska U. Locomotor recovery after thoracic spinal cord lesions in cats, rats and humans. Acta Neurobiol Exp (Wars). 2007;67(3):235-57. [PubMed]

122. Canbay S, Gürer B, Bozkurt M, Comert A, Izci Y, Başkaya MK. Anatomical relationship and positions of the lumbar and sacral segments of the spinal cord according to the vertebral bodies and the spinal roots. Clin Anat. 2014 Mar;27(2):227-33. [CrossRef] [PubMed]

123. Barson AJ. The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat. 1970 May;106(Pt 3):489-97. [PubMed] [PubMed Central]

124. Vettivel S. Vertebral level of the termination of the spinal cord in human fetuses. J Anat. 1991 Dec;179:149-61. [PubMed] [PubMed Central]

125. Calguner E, Erdogan D, Elmas C, Bahcelioglu M, Gozil R, Ayhan MS. Innervation of the rat anterior abdominal wall as shown by modified Sihler's stain. Med Princ Pract. 2006;15(2):98-101. [CrossRef] [PubMed]

126. Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech. 2016 Oct 1;9(10):1125-1137. [CrossRef] [PubMed] [PubMed Central]

127. Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM. Translational Regenerative Therapies for Chronic Spinal Cord Injury. Int J Mol Sci. 2018 Jun 15;19(6):1776. [CrossRef] [PubMed] [PubMed Central]

128. You SW, Chen BY, Liu HL, Lang B, Xia JL, Jiao XY, Ju G. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. Restor Neurol Neurosci. 2003;21(1-2):39-45. [PubMed]

129. Jian R, Yixu Y, Sheyu L, Jianhong S, Yaohua Y, Xing S, Qingfeng H, Xiaojian L, Lei Z, Yan Z, Fangling X, Huasong G, Yilu G. Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J Biomed Mater Res A. 2015 Oct;103(10):3259-72. [CrossRef] [PubMed]

130. Li LS, Yu H, Raynald R, Wang XD, Dai GH, Cheng HB, Liu XB, An YH. Anatomical mechanism of spontaneous recovery in regions caudal to thoracic spinal cord injury lesions in rats. PeerJ. 2017 Jan 10;5:e2865. [CrossRef] [PubMed] [PubMed Central]

131. Sedý J, Urdzíková L, Jendelová P, Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev. 2008;32(3):550-80. [CrossRef] [PubMed]

132. Li Y, Oskouian RJ, Day YJ, Kern JA, Linden J. Optimization of a mouse locomotor rating system to evaluate compression-induced spinal cord injury: correlation of locomotor and morphological injury indices. J Neurosurg Spine. 2006 Feb;4(2):165-73. [CrossRef] [PubMed]

133. Hahm SC, Yoon YW, Kim J. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats. Neurorehabil Neural Repair. 2015 May;29(4):370-81. [CrossRef] [PubMed]

134. Cliffer KD, Tonra JR, Carson SR, Radley HE, Cavnor C, Lindsay RM, Bodine SC, DiStefano PS. Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve. 1998 Nov;21(11):1405-13. [CrossRef] [PubMed]

135. Guzmán-Venegas RA, Araneda OF, Silvestre RA. Differences between motor point and innervation zone locations in the biceps brachii. An exploratory consideration for the treatment of spasticity with botulinum toxin. J Electromyogr Kinesiol. 2014 Dec;24(6):923-7. [CrossRef] [PubMed]

136. Gobbo M, Maffiuletti NA, Orizio C, Minetto MA. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil. 2014 Feb 25;11:17. [CrossRef] [PubMed] [PubMed Central]

137. Nakagawa K, Bergquist AJ, Yamashita T, Yoshida T, Masani K. Motor point stimulation primarily activates motor nerve. Neurosci Lett. 2020 Sep 25;736:135246. [CrossRef] [PubMed]

138. D'Amico JM, Condliffe EG, Martins KJ, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci. 2014 May 12;8:36. [CrossRef] [PubMed] [PubMed Central]

139. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006 May;23(5):635-59. [CrossRef] [PubMed]

140. Kjell J, Sandor K, Josephson A, Svensson CI, Abrams MB. Rat substrains differ in the magnitude of spontaneous locomotor recovery and in the development of mechanical hypersensitivity after experimental spinal cord injury. J Neurotrauma. 2013 Nov 1;30(21):1805-11. [CrossRef] [PubMed] [PubMed Central]

141. Tsymbaliuk VI, Medvediev VV, Senchyk YuYu, Draguntsova NG. [Comparative analysis of the rat’s paretic limb motor function level after spinal cord injury and restorative neuroengineering interventions]. Ukrainian Neurological Journal. 2017;(3):43–48. Ukrainian.

142. Tsymbaliuk VI, Medvediev VV, Senchyk YuYu, Draguntsova NG. [Comparative analysis of the dynamics of rat’s paretic limb motor function restoration following a spinal cord trauma and restorative neuroengineering interventions involving mesenchymal and neural stem cells]. International Neurological Journal. 2017;(7):16-22. Ukrainian. [CrossRef]

143. Tsymbaliuk VI, Medvediev VV, Senchyk YuYu, Draguntsova NG. [Comparative analysis of the rat’s paretic limb spasticity dynamics following a spinal cord trauma and restorative neuroengineering interventions involving mesenchymal and neural stem cells]. International Neurological Journal. 2018;(3):5-12. Ukrainian. [CrossRef]

144. TsymbalyukVІ, Medvedyev VV, VasylyevaІG, КоzyavkinVІ, GalantaОS, TsyubkoОІ, Chopyk NG, Olexenko NP, Draguntsova NG. [The impact of experimental spinal injury on the tissue expression of mRNA of some elements of a spinal cord mediatorial systems]. Klin Khir. 2017 Jul. 6;(4):69-3. Ukrainian.

145. Siebert JR, Eade AM, Osterhout DJ. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. Biomed Res Int. 2015;2015:752572. [CrossRef] [PubMed] [PubMed Central]

146. Garcia E, Aguilar-Cevallos J, Silva-Garcia R, Ibarra A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm. 2016;2016:9476020. [CrossRef] [PubMed] [PubMed Central]

147. Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev. 2018 Apr 1;98(2):881-917. [CrossRef] [PubMed] [PubMed Central]

148. Ng KA, Rusly A, Gammad GGL, Le N, Liu SC, Leong KW, Zhang M, Ho JS, Yoo J, Yen SC. A 3-Mbps, 802.11g-Based EMG Recording System With Fully Implantable 5-Electrode EMG Acquisition Device. IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):889-902. [CrossRef] [PubMed]

149. Zealear D, Li Y, Huang S. An Implantable System For Chronic In Vivo Electromyography. J Vis Exp. 2020 Apr 21;(158):10.3791/60345. [CrossRef] [PubMed] [PubMed Central]

Published

2021-09-27

How to Cite

Medvediev, V. V., Abdallah, I. M., Draguntsova, N. G., Savosko, S. I., Vaslovych , V. V., Tsymbaliuk, V. I., & Voitenko, N. V. (2021). Model of spinal cord lateral hemi-excision at the lower thoracic level for the tasks of reconstructive and experimental neurosurgery. Ukrainian Neurosurgical Journal, 27(3), 33–53. https://doi.org/10.25305/unj.234154

Issue

Section

Original articles