Motor evoked potentials monitoring in resection of infratentorial lesions




motor evoked potentials, transcranial evoked potentials, corticobulbar evoked potentials, infratentorial tumors


Resection of infratentorial tumors is one of the most complicated surgical interventions in neurosurgery. These operations require high-quality technical equipment and high skill of the surgeon. The greatest challenge is the manipulation in the limited area with a high density of functional structures and anatomy changed by a tumor. As a result, the risk of new neurological deficits is high and can lead to a disability of the patient. The use of intraoperative neurophysiological monitoring allows a significant risk reduction of surgery. This technique allows the neurosurgeon to identify all functionally important structures in the area of surgical intervention and provides control of their functions intraoperatively in real time. Transcranial motor evoked potentials are the modality of intraoperative monitoring, a record of the motor evoked potentials in response to transcranial electrical stimulation. The method assesses the integrity of corticospinal and corticobulbar pathways, since these are the main motor pathways of the central nervous system, their damage may lead to a significant motor deficit.

This article presents a review and an analysis of the literature within the historical context, which shows the development of motor evoked potentials in neurosurgery, especially in infratentorial surgery. The methodology of the transcranial motor evoked potentials and corticobulbar evoked potentials and evaluation criteria during surgery for infratentorial lesions are described. Moreover, we compared the literature data with our own experience.

Author Biography

Olga S. Herasymenko, Uzhhorod National University

Department of Neurology, Neurosurgery and Psychiatry


1. Zülch K.J. Intracranial Tumours of Infancy and Childhood. In: Voth D., Gutjahr P., Langmaid C. (eds) Tumours of the Central Nervous System in Infancy and Childhood. Springer-Verlag Berlin Heidelberg, 1982. P. 1–16 [CrossRef]

2. Samii M. Operative Treatment of Cerebellopontine Angle Tumors with Special Consideration of the Facial and the Acoustic Nerve. In: Marguth F., Brock M., Kazner E., Klinger M., Schmiedek P. (eds) Neurovascular Surgery. Advances in Neurosurgery. Springer, Berlin, Heidelberg; 1979. P. 138–45. [CrossRef]

3. Albright AL, Sclabassi RJ. Use of the Cavitron ultrasonic surgical aspirator and evoked potentials for the treatment of thalamic and brain stem tumors in children. Neurosurgery. 1985 Oct;17(4):564-8. [CrossRef] [PubMed]

4. Legatt AD, Arezzo JC, Vaughan HG Jr. The anatomic and physiologic bases of brain stem auditory evoked potentials. Neurol Clin. 1988 Nov;6(4):681-704. [PubMed]

5. American Electroencephalographic Society (1994) Guideline Eleven: Guidelines for Intraoperative Monitoring of Sensory Evoked Potentials. J Clin Neurophysiol. 1994 Jan;11(1):77-87. [PubMed]

6. Møller A.R. Monitoring Auditory Evoked Potentials. In: Intraoperative Neurophysiological Monitoring. Springer, New York, NY; 2011. P. 123-161 [CrossRef]

7. Strauss C, Romstöck J, Nimsky C, Fahlbusch R. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg. 1993 Sep;79(3):393-9. [CrossRef] [PubMed]

8. Hone SW, Commins DJ, Rames P, Chen JM, Rowed D, McLean A, Nedzelski JM. Prognostic factors in intraoperative facial nerve monitoring for acoustic neuroma. J Otolaryngol. 1997 Dec;26(6):374-8. [PubMed]

9. Harper CM, Daube JR. Facial nerve electromyography and other cranial nerve monitoring. J Clin Neurophysiol. 1998 May;15(3):206-16. [CrossRef] [PubMed]

10. Nakao Y, Piccirillo E, Falcioni M, Taibah A, Kobayashi T, Sanna M. Electromyographic evaluation of facial nerve damage in acoustic neuroma surgery. Otol Neurotol. 2001 Jul;22(4):554-7. [CrossRef] [PubMed]

11. Morota N, Ihara S, Deletis V. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst. 2010 Apr;26(4):513-21. [CrossRef] [PubMed]

12. Fahlbusch R, Strauss C. Zur chirurgischen Bedeutung von cavernösen Hämangiomen des Hirnstammes [Surgical significance of cavernous hemangioma of the brain stem]. Zentralbl Neurochir. 1991;52(1):25-32. German. [PubMed]

13. Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, Morris III HH, Dinner DS, Klem G, Hahn JF, Shetter AG, Ginsburg HH. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol. 1986 Jan;19(1):22-5. [CrossRef] [PubMed]

14. Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001 Aug;112(8):1442-50. [CrossRef] [PubMed]

15. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980 May 22;285(5762):227. [CrossRef] [PubMed]

16. Angel A, Gratton DA. The effect of anaesthetic agents on cerebral cortical responses in the rat. Br J Pharmacol. 1982 Aug;76(4):541-9. [CrossRef] [PubMed] [PubMed Central]

17. Boyd SG, Rothwell JC, Cowan JM, Webb PJ, Morley T, Asselman P, Marsden CD. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry. 1986 Mar;49(3):251-7. [CrossRef] [PubMed] [PubMed Central]

18. Macdonald DB, Skinner S, Shils J, Yingling C; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013 Dec;124(12):2291-316. [CrossRef] [PubMed]

19. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992 Apr;76(4):502-9. [CrossRef] [PubMed]

20. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993 Feb;32(2):219-26. [CrossRef] [PubMed]

21. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol. 1996 Sep;100(5):375-83. [CrossRef] [PubMed]

22. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008 Feb;119(2):248-64. [CrossRef] [PubMed]

23. Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998 May 15;4(5):e1. [CrossRef] [PubMed]

24. Deletis V. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils J (eds). Neurophysiology in neurosurgery: a modem intraoperative approach. Academic Press, San Diego; 2002. P. 25-51.

25. Jankowska E, Padel Y, Tanaka R. Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey. J Physiol. 1975 Aug;249(3):637-67. [CrossRef] [PubMed] [PubMed Central]

26. Sala F, Krzan MJ, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst. 2002 Jul;18(6-7):264-87. [CrossRef] [PubMed]

27. Bricolo A, Sala F. Intraoperative neurophysiology of cranial nerve and brainstem. In: Deletis V, Shils J (eds). Neurophysiology in neurosurgery: a modem intraoperative approach. Academic Press, San Diego: 2002. P. 267-339.

28. Sala F, Lanteri P, Bricolo A. Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg. 2004;29:133-69. [CrossRef] [PubMed]

29. Kodama K, Javadi M, Seifert V, Szelényi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg. 2014 Dec;121(6):1453-61. [CrossRef] [PubMed]

30. Slotty PJ, Abdulazim A, Kodama K, Javadi M, Hänggi D, Seifert V, Szelényi A. Intraoperative neurophysiological monitoring during resection of infratentorial lesions: the surgeon’s view. J Neurosurg. 2017 Jan;126(1):281-288. [CrossRef] [PubMed]

31. Neuloh G, Schramm J. Mapping and monitoring of supratentorial procedures. In: Deletis V, Shils J (eds). Neurophysiology in Neurosurgery: A modern Intraoperative Approach. Academy Press, 2002. P. 339-401.

32. Sarnthein J, Bozinov O, Melone AG, Bertalanffy H. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function. Acta Neurochir (Wien). 2011 Sep;153(9):1753-9. [CrossRef] [PubMed]

33. Dong CC, Macdonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol. 2005 Mar;116(3):588-96. [CrossRef] [PubMed]

34. Akagami R, Dong CC, Westerberg BD. Localized transcranial electrical motor evoked potentials for monitoring cranial nerves in cranial base surgery. Neurosurgery. 2005 Jul;57(1 Suppl):78-85; discussion 78-85. [CrossRef] [PubMed]

35. Ulkatan S, Deletis V, Fernandez-Conejero I. Central or peripheral activations of the facial nerve? J Neurosurg. 2007 Mar;106(3):519-20; author reply 520. [CrossRef] [PubMed]

36. Deletis V, Fernández-Conejero I. Intraoperative Monitoring and Mapping of the Functional Integrity of the Brainstem. J Clin Neurol. 2016 Jul;12(3):262-73. [CrossRef] [PubMed] [PubMed Central]

37. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994 Nov 15;481 (Pt 1)(Pt 1):243-50. [CrossRef] [PubMed] [PubMed Central]

38. Fukuda M, Oishi M, Takao T, Saito A, Fujii Y. Facial nerve motor-evoked potential monitoring during skull base surgery predicts facial nerve outcome. J Neurol Neurosurg Psychiatry. 2008 Sep;79(9):1066-70. [CrossRef] [PubMed]

39. Acioly MA, Liebsch M, Carvalho CH, Gharabaghi A, Tatagiba M. Transcranial electrocortical stimulation to monitor the facial nerve motor function during cerebellopontine angle surgery. Neurosurgery. 2010 Jun;66(6 Suppl Operative):354-61; discussion 362. [CrossRef] [PubMed]

40. Matthies C, Raslan F, Schweitzer T, Hagen R, Roosen K, Reiners K. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg. 2011 Dec;113(10):872-9. [CrossRef] [PubMed]

41. Liu BY, Tian YJ, Liu W, Liu SL, Qiao H, Zhang JT, Jia GJ. Intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation for preservation of facial nerve function in patients with large acoustic neuroma. Chin Med J (Engl). 2007 Feb 20;120(4):323-5. [CrossRef] [PubMed]

42. Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin. 2007 Dec;37(6):399-406. [CrossRef] [PubMed]

43. Deletis V, Fernández-Conejero I, Ulkatan S, Rogić M, Carbó EL, Hiltzik D. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol. 2011 Sep;122(9):1883-9. [CrossRef] [PubMed]

44. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol. 2009 Feb;120(2):336-41. [CrossRef] [PubMed]

45. Ito E, Ichikawa M, Itakura T, Ando H, Matsumoto Y, Oda K, Sato T, Watanabe T, Sakuma J, Saito K. Motor evoked potential monitoring of the vagus nerv7e with transcranial electrical stimulation during skull base surgeries. J Neurosurg. 2013 Jan;118(1):195-201. [CrossRef] [PubMed]

46. Hariharan P, Balzer JR, Anetakis K, Crammond DJ, Thirumala PD. Electrophysiology of Extraocular Cranial Nerves: Oculomotor, Trochlear, and Abducens Nerve. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society. 2018 Jan;35(1):11-15. [CrossRef] [PubMed]

47. Kim SY, Im HW, Choi YD, Kim K, Kim JW, Kim YH, Seo HG. Intraoperative Monitoring of Hypoglossal Nerve Using Hypoglossal Motor Evoked Potential in Infratentorial Tumor Surgery: A Report of Two Cases. Ann Rehabil Med. 2018 Apr;42(2):352-357. [CrossRef] [PubMed] [PubMed Central]

48. Sala F, Gallo P, Tramontano V, Gerosa M. Intraoperative Neurophysiological Monitoring in Posterior Fossa Surgery. In: Özek M, Cinalli G, Maixner W, Sainte-Rose C. (eds) Posterior Fossa Tumors in Children. Springer, Cham; 2015. P. 239-262. [CrossRef]



How to Cite

Herasymenko, O. S., Smolanka, V. I., Smolanka, A. V., & Sechko, O. S. (2020). Motor evoked potentials monitoring in resection of infratentorial lesions. Ukrainian Neurosurgical Journal, 26(3), 22–27.



Review articles