Biotechnology and nanotechnology: new possibilities in degenerative spine surgery
DOI:
https://doi.org/10.25305/unj.108852Keywords:
degenerative spine, biotechnology, nanotechnology, molecular therapy, protein therapy, gene therapy, tissue engineering, cell therapy.Abstract
Analytic review is dedicated to new methods of degenerative spine surgery based on biotechnology and nanotechnology. Experience of different experimental and clinical investigations with using of molecular and protein therapy combined with gene therapy, as well as tissue engineering and cell therapy is described. Results of investigations shows potential usefulness of biotechnologies and nanotechnologies as new approaches to restore degenerative spine changes.References
Abbushi A., Endres M., Cabraja M. et al. Regenerative effects of cell–free polymer–based constructs in a rabbit model of disc degeneration //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 19.
Ahrens M., Donkersloot P., Martens F. et al. Nucleus replacement with an in situ cured, balloon contained, injectable polyurethane //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 19.
Alden T.D., Pittman D.D., Beres E.J. et al. Percutaneous spinal fusion using bone morphogenetic protein–2 gene therapy // J.Neurosurg. — 1999. — Vol.90. — P.109–114.
An H., Thonar E., Masuda K. Biological repair of intervertebral disc // Spine. — 2003. — V.28. — P. 86–92.
Berlemann U., Schwarzenbach O. Clinical evaluation of an injectable nucleus replacement — 12 and 24 month outcomes //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 21.
Boden S.D., Liu Y., Hair G. et al. LMP–1, a LIM–domain protein, mediates BMP–6 effects on bone formation // Endocrinology. — 1998. — V.139. — P. 5125–5134.
Boden S.D., Titus L., Hair G. et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP–1) // Spine. — 1998. — V.23. — P. 2486–2492.
Boyd L., Carter A. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc // Eur. Spine J. — 2006. — N15, suppl. 3. — P.414 — 421.
Carter A.J. Silk elastin hydrogels for nucleus replacement and repair //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 22.
Ferguson S.J., Stoyanov J.V., Ettinger L. et al. The application of biomaterials for tissue engineering in the intervertebral disc //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 26.
Ganey T.M., Meisel H.J., Hutton W.C. et al. Adipose–derived regenerative cell transplantation: Evaluating intervertebral disc repair in a canine model //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 27.
Hebecker R., Sola S., Piek J. Lumbar interbody fusion with a new nanostructured HA bone substitute (Nanobone) //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 29.
Hegewald A.A., Endres M., Sittinger M. et al. Polymer–based regenerative treatment strategies in spinal surgery //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 30.
Helder M.N., Lu Z.F., Bank R.A. et al. Scaffolds and adipose stem cells in intervertebral disc repair //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 31.
Helm G.A., Aiden T.D., Beres E.J. et al. Use of bone morphogenetic protein–9 gene therapy to induce spinal arthrodesis in the rodent // J.Neurosurg. — 2000. — V.92. — P.191–196.
Horna D., Borros S., Meisel H.J. et al. New nanofiber polymeric material for therapeutic medicine //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 33.
Knippenberg M., Helder M.N., de Blieck–Hogervorst J. et al. Prostaglandins influence osteogenic differentiation of adipose tissue–derived mesenchymal stem cells //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 30.
Kroeze R.J., Breuls R., Schouten T.E. et al. Rapid adherence of non–cultured adipose stem cells to a bioresorbable scaffold //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 36.
Leung V., Chan D., Cheung K. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction // Eur. Spine J. — 2006. — N15, suppl. 3. — P. 406 — 413.
Longinotti C., Revell P.A., Ambrosio L. et al. Preclinical characterisation of injectable hyaluronan–based gels for tissue engineered intervertebral disc repair //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 37.
Matsumoto T., Masuda K., Chen S., et al. Transfer of osteogenic protein — 1 gene by gene gun system promotes matrix synthesis in bovine intervertebral disc and articular cartilage cells // Orthopaed. Res. Soc. — 2001. — V. 30. — P. 849 — 876.
Meisel H.J., Bertagnoli R., Mayer M. et al. EuroDISC Study — Assessment of efficacy/safety of sequestrectomy + autologous disc chondrocytes: 2nd interims analysis //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 40.
Moon S.H., Gilbertson L.G., Nishida K. et al. Human intervertebral disc cells are genetically modifiable by adenovirus–mediated gene transfer // Spine. — 2000. — V. 25. — P. 2573–2579.
Moon S.H., Nishida K., Gilbertson L.G. et al. Biologic response of human intervertebral disc cell to gene therapy cocktail // Orthopaed. Res. Soc. — 2001. — V. 30. — P. 883 — 886.
Moon S.H., Nishida K., Gilbertson L.G. et al. Responsiveness of human intervertebral disc cells to adenovirus mediated transfer of TGF–β1 cDNA in 2D and 3D culture systems: comparison to exogenous TGF–β1 //Abstr. Intern. Soc. for the Study of the Lumbar Spine. — Adelaide (Australia), 2002. — P. 145 –146.
Neidlinger–Wilke C., Würtz K., Ignatius A. et al. Suitability of disc cells versus mesenchymal stem cells in a collagen scaffold for disc tissue engineering //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 46.
Nishida K., Kang J.D., Suh J.K. et al. Adenovirus–mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration // Spine. — 1999. — V. 23. — P. 2437–2442.
Nishida K., Kang J.D., Gilbertson L.G. et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: An in vivo study of adenovirus–mediated transfer of the human transforming growth factor beta 1 encoding gene // Spine. — 1999. — V. 24. — P. 2419–2425.
Ogon M., Bartl R., Meissner J. et al. Tissue engineering of the intervertebral disk: Does donor pathology matter? //Abstr. 2nd Intern. Congr. Biotechnologies for Spinal Surgery.– Leipzig, 2007. — P. 42.
Paul R., Haydon R., Ishikawa A. Potential use of Sox9 gene therapy for intervertebral degenerative disc desease // Spine. — 2003. — V. 28. — P.755–763.
Richardson S., Walker R., Parker S. et al. Intervertebral disc cell–mediated mesenchymal stem cell differentiation // Stem Cells. — 2006. — N24. — P.707–716.
Riew D., Lou J., Wright N. et al. Thoracoscopic intradiscal spine fusion using a minimally invasive gene–therapy technique // J.Bone. Joint Surg. — 2003. — V.85. — P.866–871.
Sakai D., Mochida J., Iwachina T. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model // Spine. — 2005. — V.30. — P.2379–2387.
Steinmann J.C., Herkowitz H.N. Pseudarthrosis of the spine // Clin. Orthop. — 1992. — N284. — P.80–90.
Wallach C.J., Sobajima S., Watanabe Y. Gene transfer of the catabolic inhibitor TIMP–1 increases measured proteoglicans in human intervertebral disc cells //Abstr. Intern. Soc. for the Study of the Lumbar Spine. — Cleveland, Ohio, 2002. — P. 67.
Wehling P., Schulitz K.P., Robbins P.D. et al. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy // Spine. — 1997. — V. 22. — P. 1092–1097.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2008 E. G. Pedachenko, K. I. Horbatyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ukrainian Neurosurgical Journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this Journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the Journal under the terms of Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this Journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form of which it has been published by the Journal (for example, to upload the work to the online storage of the Journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this Journal is included.