Antitumour properties of neural stem cells: possible application in brain tumour therapy

Authors

  • N. I. Lisyany Romodanov Neurosurgery Institute, Kiev, Ukraine
  • L. D. Lyubych Romodanov Neurosurgery Institute, Kiev, Ukraine

DOI:

https://doi.org/10.25305/unj.108783

Keywords:

neural stem cells, progenitors, tropism, brain tumors, gliomas

Abstract

Up-to-date data on antitumour properties of neural stem (NSC) and progenitor cells and possibility of using them in brain tumour therapy are presented in the literature review. NSC potential for migration and tropism to brain tumours is described, as well as possible mechanisms of NSC antitumour properties.

References

Лисяный Н.И. Иммунная система головного мозга. — К.: Здоров’я, 1999. — 216 с.

Маркова О.В. Изучение некоторых механизмов цитотоксического действия клеток головного мозга in vitro // Иммунная система головного мозга / Под. ред. Н.И. Лисяного. — К., 1999. — С.147–156.

Семенова В.М., Цымбалюк В.И., Стайно Л.П. и др. Изучение противоопухолевых свойств различных популяций клеток головного мозга в культуре нервной ткани in vitro // Иммунная система головного мозга / Под. ред. Н.И. Лисяного. — К., 1999. — С.136–146.

Цымбалюк В.И., Семенова В.М., Медведев В.В. Современные представления о роли нейральных стволовых клеток в генезе опухолей головного мозга // Клеточные культуры. Информ. бюллетень. — СПб, 2007. — Вып.22. — С.3–10.

Шварцбурд П.М. Стволовые клетки в развитии рака и предракового окружения // Молекулярная медицина. — 2007. — №4. — С.3–9.

Aboody K.S., Brown A., Rainov N.G. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence for intracranial gliomas // PNAS USA. — 2000. — V.100. — P.12846–12851.

Allport J.R., Shinde Patil V.R., Weissleder R. et al. Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4-integrin and SDF-1alpha-dependent mechanisms // Cancer Biol. Ther. — 2004. — V.3, N9. — P.838–844.

Barresi V., Belluardo N., Sipione S. et al. Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy // Cancer Gene Ther. — 2003. — V.10, N5. — P.396–402.

Beachy P.A., Karhadkar S.S., Berman D.V. Tissue repair and stem renewal in carcinogenesis // Nature. — 2004. — V.432. — P.324–331.

Boockvar J.A., Kapitonov D., Kapoor G. et al. Constitutive EGFR signaling confers a motile phenotype to neural stem cells // Mol. Cell. Neurosci. — 2003. — V.24, N4. — P.1116–1130.

Ehtesham M., Kabos P., Kabosova A. et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma // Cancer Res. — 2002. — V.62, N20. — P.5657–5663.

Ehtesham M., Yuan X., Kabos P. et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4 // Neoplasia. — 2004. — V.6, N3. — P.287–293.

Heese O., Disko A., Zirkel D. Neural stem cell migration toward gliomas in vitro // Neuro Oncol. — 2005. — V.7, N4. — P.476–484.

Honeth G., Staflin K., Kalliomki S. et al. Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma // Exp. Cell. Res. — 2006. — V.312, N8. — P.1265–1276.

Imitola J., Raddassi K., Park K.I. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway // Proc. Natl. Acad. Sci. USA. — 2004. — V.101, N52. — P.18117–18122.

Jeon J.Y., An J.H., Kim S.U. et al. Migration of human neural stem cells toward an intracranial glioma // Exp. Mol. Med. — 2008. — V.40, N1. — P.84–91.

Kim S.K., Kim S.U., Park I.H. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression // Clin. Cancer Res. — 2006. — V.12, N18. — P.5550–5556.

Kucia M., Reca R., Miekus K. et al. Trafficking of normal stem cells and metastasis stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR44 axis // Stem Cells. — 2005. — V.23. — P.879–894.

Lewin M., Carlesso N., Tung C.H. et al. Tat peptide-derivatized magnetic nanoparticles allow in vitro tracking and recovery of progenitor cells // Nat. Biotech. — 2000. — V.18. — P.410–414.

Maurer M.H., Tripps W.K. et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells // Neurosci. Lett. — 2003. — V.344. — P.165–168.

Mueller F.J., McKercher S.R., Imitola J. et al. At the interface of the immune system and the nervous system: how neuroinflammation modulates the fate of neural progenitors in vivo // Ernst Schering Res. Found Workshop. — 2005. — V.53. — P.83–114.

Noble M. Can neural stem cells be used to track down and destroy migratory brain tumor cells while also providing a means of repairing tumor-assotiated damage? // PNASUSA. — 2000. — V.97. — P.12393–12395.

Ourednik J., Ourednik V., Lynch W.P. et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons // Nat. Biotech. — 2002. — V.20. — P.1103–1110.

Park K.I., Ourednik J., Ourednik V. et al. Global gene and cell replacement strategies via stem cells // Gene Ther. — 2002. — V.9. — P.613–624.

Schmidt N.O., Przylecki W., Yang W. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor // Neoplasia. — 2005. — V.7. — P.623–629.

Serfoso P., Schlarman M.S., Pierret C. et al. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines // Cancer Cell Int. — 2006. — V.6. — P.1–6.

Shah K., Bureau E., Kim D.E. et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression // Ann. Neurol. — 2005. — V.57, N1. — P.34–41.

Staflin K., Honeth G., Kalliomaki S. et al. Neural progenitor cell lines inhibit rat tumor growth in vivo // Cancer Res. — 2004. — V.64, N15. — P.5347–5354.

Staflin K., Lindvall M., Zuchner T., Lundberg C. Instructive cross-talk between neural progenitor cells and gliomas // J. Neurosci. Res. — 2007. — V.85, N10. — P.2147–2159.

Weiss W.A., Burns M.J., Hackett C. et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma // Cancer Res. — 2003. — V.63, N7. — P.1589–1595.

Weissleder R., Ntziachristos V. Shedding light onto live molecular targets // Nat. Med. — 2003. — V.9. — P.123–128.

Yang S.Y., Liu H., Zhang J.N. Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12 // DNA Cell Biol. — 2004. — V.23, N6. — P.381–389.

Yip S., Aboody K.S., Burns M. et al. Neural stem cell biology may be well suited for improving brain tumor therapies // Cancer J. — 2003. — V.9. — P.189–204.

Yuan X., Hu J., Belladonna M.L. et al. Interleukin-23-expressing bone-marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma // Cancer Res. — 2006. — V.66, N5. — P.2630–2638.

Ziu M., Schmidt N.O., Cargioli T.G. et al. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells // J. Neurooncol. — 2006. — V.79, N2. — P.125–133.

Published

2009-03-15

How to Cite

Lisyany, N. I., & Lyubych, L. D. (2009). Antitumour properties of neural stem cells: possible application in brain tumour therapy. Ukrainian Neurosurgical Journal, (1), 4–7. https://doi.org/10.25305/unj.108783

Issue

Section

Review articles