Comparative efficacy of intravenous injection of bone marrow mesenchymal stem cells in rats with model of Parkinson-like syndrome

Authors

  • Vladimir Pyatikop Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine
  • Mohammad Ahmad Msallam Jr Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine
  • Elena Shchegelskaya Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine
  • Igor Kutovoy Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine
  • Galina Gubina-Vakulik Department of Pathological Anatomy, Kharkiv National Medical University, Kharkiv, Ukraine
  • Tetyana Gorbach Department of Medical and Bioorganic Chemistry, Kharkiv National Medical University, Kharkiv, Ukraine

DOI:

https://doi.org/10.25305/unj.51303

Keywords:

Parkinson-like syndrome, bone marrow mesenchymal stem cells, rat behavior, morphological changes, dopamine level, experiment

Abstract

The purpose: to study efficacy of intravenous injection of human and rat bone marrow mesenchymal stem cells (BMMSC) in rats with Parkinson-like syndrome (PS), modeled by chemical degradation of substantia nigra (SN).

Materials and methods. Animals were divided into 5 groups: I — intact (n=7); II — PS, bilateral injection of 6-OHDA in SN (n=15); III — PS, intravenous injection of human BMMSC (0.5x106 cells per 1 rat) (n=9); IV — PS, intravenous injection of rat BMMSC (1x106) (n=9); V — PS, intravenous injection of rat BMMSC (2x106) (n=9). Cells were injected 2 weeks after PS modelling. Efficacy of intravenous injection of stem cells was estimated by recovery of movements, changes of dopamine level in blood and brain frontal lobe of the rats and morphological changes of SN.

Results. Intravenous injection of human BMMSC at PS helps to restore movement for 14–15 days, normalize DA level in the blood and tissue of frontal lobe of the rats on the 10th day and increase the number of neurons in damaged SN area.

Intravenous injection of rats BMMSC (in doze 1x106) was inefficient, partial restoration of movement and DA level normalization in the blood and in tissue of frontal lobe was observed only to 20–21 day. Intravenous injection of rat BMMSC (in doze 2x106) at PS helps to restore movement to 9–10 day, normalize DA level in the blood and tissue of frontal lobe on 10th day, active neurons in SA are observed.

Conclusions. Intravenous injections of rat and human BMMSC are effective for treatment of PS symptoms in rats, the results depend on the amount of injected cells.

References

1. Sokolova I, Fedotova O, Gilerovich E, Bilibina A, Pavlichenko N, Kruglyakov P, Polyntsev D. [Correction of the investigatory and exploratory deficiency in rat with multipotent mesenchymal stromal cells]. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2009;4(4):65–72. Russian. [eLIBRARY]

2. Nikolsky N, Gabay I, Somova N. [Human embryonic stem cells. Problems and Perspectives]. Tsitologiya. 2007;49(7):529–537. Russian. [Publisher Full Text]

3. Gusev YE, Gekht AB, Popov GR [et al.] Bolezn' Parkinsona: klinika, diagnostika i lecheniye. Ugryumov MV editor. Fundamental'nyye i prikladnyye aspekty. Moscow: Nauka; 2010. Russian.

4. P’yatikop VO. Neyrokhírurgíchna korektsíya rukhovikh porushen' pri parkínsonízmí (yeksperimental'ne ta klíníchne doslídzhennya). [The neurosurgical correction of movement disorders at Parkinson disease (experimental and clinical research)]. [dissertation]. Kiev (Ukraine): Romodanov Neurosurgery Institute; 2009. Ukrainian.

5. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1364-1369. Epub 2003 Jan 21. [PubMed]

6. Shabalov VA, Fedorova NV, Ugriumov MV, Popov AP, Shtok VN, Iakovleva SA, Arora M. Neyrotransplantatsiya v lechenii bolezni Parkinsona (katamnez). [Neurotransplantation in the treatment of Parkinson disease: follow-up]. Zh Vopr Neirokhir Im N N Burdenko. 2002 Apr-Jun;(2):29-33; discussion 34-5. Russian. [PubMed]

7. Bekhtereva NP, Gilerovich EG, Gurchin FA, Lukin VA, Matveeva TS, Otellin VA. [Transplantation of embryonal nerve tissues in the treatment of Parkinson disease]. Zh Nevropatol Psikhiatr Im S S Korsakova. 1990;90(11):10-3. Russian. [PubMed]

8. Dyban A, Dyban P. Stvolovyye kletki v eksperimental'noy i klinicheskoy meditsine. [Stem cells in experimental and clinical medicine]. Med. akad. zhurn. 2002;2(3):3–25. Russian.

9. Zinkova NN, Gilerovich EG, Sokolova IB, Shvedova EV, Bilibina AA, Kruglyakov PV, Polyntsev DG. [Mesenchymal stem cells transplantation influences upon dynamics of morphological changes in rat brain after stroke]. Tsitologiya. 2007;49(11):923–933. Russian. [Publisher Full Text]

10. Otellin V.A. Morfologicheskoye obosnovaniye primeneniya metoda neyrotransplantatsii v klinike. [The morphological validation for the clinical use of a nerve transplantation method]. Vopr. neyrokhirurgii im. N.N. Burdenko. 1999 Oct-Dec;(4):32-36; discussion 36-37. Russian. [PubMed]

11. Cho EG, Zaremba JD, McKercher SR, Talantova M, Tu S, Masliah E, Chan SF, Nakanishi N, Terskikh A, Lipton SA. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One. 2011;6(8):e24027. [CrossRef]

12. Ma Y, Peng S, Dhawan V, Eidelberg D. Dopamine cell transplantation in Parkinson’s disease: Challenge and perspective. Br Med Bull. 2011;100:173-89. [CrossRef]

13. Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T. Parkinson’s disease induced pluripotent stem cells with triplication of the α synuclein locus. Nat Commun. 2011 Aug 23;2:440. [CrossRef]

14. Soldner F, Laganiиre J, Cheng A, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146(2):318–331. [CrossRef]

15. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011 Jul 3;476(7359):224-227. [CrossRef]

16. Anisimov SV. [Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications]. Uspekhi gerontologii. 2008;21(4):575–592. Russian. [eLIBRARY]

17. Chao Y, He B, Tay S. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson’s disease. J. Neuroimmunol. 2009;216(1–2):39–50. [CrossRef]

18. Wislet-Gendebien S1, Laudet E, Neirinckx V, Rogister B. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders? J Biomed Biotechnol. 2012;2012:601560. [CrossRef]

19. Zhang YJ, Zhang W, Lin CG, Ding Y, Huang SF, Wu JL, Li Y, Dong H, Zeng YS. Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats. J Neurol Sci. 2012 Feb 15;313(1-2):64-74. [CrossRef]

20. Wei L, Fraser J, Lu Z-Y, Hu X, Yu S. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiology of Disease 2012;46(3):635–645. [CrossRef]

21. Kang ES, Ha KY, Kim YH. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes. J Korean Med Sci. 2012 Jun;27(6):586-593. [CrossRef]

22. Whone A, Kemp K, Sun M, Wilkins A, Scolding N. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotoninergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res. 2012;1431:86–96. [CrossRef]

23. Jing Y, Jian-Xiong Y. 3-D spheroid culture of bone marrow mesenchymal stem cell of rhesus monkey with improved multi-differentiation potential to epithelial progenitors and neuron in vitro. Clin. Experim. Ophthalmol. 2011;8:808–819. [CrossRef]

24. Otero L, Zurita M, Bonilla C, Aguayo C, Rico M, Rodrнguez A, Vaquero J. Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis. Cytotherapy. 2012;14(1):34–44. [CrossRef]

25. Fifkova Ye, Marshala Dzh. Stereotasicheskiye atlasy mozga koshki, krolika i krysy. Prilozheniye. Buresh YA, Petran' M, Zakhar I. Elektrofiziologicheskiye metody issledovaniya (rus. perevod). Moscow: Inostr., lit; 1962. Russian.

26. Pyatikop VA, Grigorova IA. Sravnitel'naya kharakteristika dinamiki dvigatel'nykh narusheniy i ikh sopostavleniya s morfofunktsional'nymi osobennostyami pri eksperimental'nom parkinsonizme posle vvedeniya kriokonservirovannykh embrional'nykh nervnykh kletok i neyroindutsirovannykh in vitro stromal'nykh kletok. Ukr. vísn. psikhonevrologíí̈. 2007;15(1)51–53. Russian.

Published

2014-06-09

How to Cite

Pyatikop, V., Msallam Jr, M. A., Shchegelskaya, E., Kutovoy, I., Gubina-Vakulik, G., & Gorbach, T. (2014). Comparative efficacy of intravenous injection of bone marrow mesenchymal stem cells in rats with model of Parkinson-like syndrome. Ukrainian Neurosurgical Journal, (2), 55–61. https://doi.org/10.25305/unj.51303

Issue

Section

Original articles