DOI: https://doi.org/10.25305/unj.199507

Electrical welding technology in restoring the integrity of the injured peripheral nerve: review of literature and own experimental research

Vitaliy I. Tsymbaliuk, Volodymyr V. Medvediev, Pavlo V. Ivanchov, Vitaliy Yu. Molotkovets, Yuriy B. Chaikovsky, Alina V. Korsak

Abstract


Mechanical damage to the peripheral nerve is a disabling type of trauma with high cumulative potential, treatment and rehabilitation of which remains an important medical problem. At present, neurorrhaphy is a ubiquitous means of connecting stumps of a crossed nerve. The disadvantages of the method are the manual complexity and prolongation of local inflammatory reactions by persistent suture material. Alternatively, methods of glue, laser, photochemical, nanocomposite or, least studied, electric welding compounds are considered.

A series of studies performed on adult white outbred male rats evaluated the efficacy and safety of multiple point-welded epineural joints of the sciatic nerve stump after crossing it. In particular, it was found that the tested type of connection provides a fast and reliable fixation of the stump of the crossed nerve, which by Sciatic Functional Index values is 2 months faster, but ultimately does not differ from neurorrhaphy. Instead, the amplitude of the electrical M-response of the paretic calf muscle and the density of nerve fibers in the regeneration neuroma thickness are significantly higher after 5 months after the weld, and the angle of deviation of the fibers from the nerve axis is substantially smaller than after neurorrhaphy.

In general, the effectiveness of a welded joint is no worse than an epineural surgical suture, in some respects better, as it requires less time and resources. The study also attempts to pathophysiologically interpret the data and compare them with the results of testing other seamless means of restoring the integrity of the crossed nerve.

In our opinion, the obtained experimental data against the background of the results of other research groups motivate the clinical validation of the proposed method.


Keywords


peripheral nerve injury; neurorrhaphy; weld biological tissue; peripheral nerve regeneration

References


1. Bekelis K, Missios S, Spinner RJ. Falls and peripheral nerve injuries: an age-dependent relationship. J Neurosurg. 2015 Nov;123(5):1223-9. [CrossRef] [PubMed]

2. Tsymbaliuk V, Medvediev V, Semenova V, Grydina N, Senchyk Y, Velychko O, Dychko S, Vaslovych V. [The model of lateral spinal cord hemisection. Part I. The technical, pathomorphological, clinical and experimental peculiarities]. Ukrainian Neurosurgical Journal. 2016;(2):18-27. Ukrainian. [CrossRef]

3. Foster CH, Karsy M, Jensen MR, Guan J, Eli I, Mahan MA. Trends and Cost-Analysis of Lower Extremity Nerve Injury Using the National Inpatient Sample. Neurosurgery. 2019 Aug 1;85(2):250-256. [CrossRef] [PubMed]

4. McAllister RM, Gilbert SE, Calder JS, Smith PJ. The epidemiology and management of upper limb peripheral nerve injuries in modern practice. J Hand Surg Br. 1996 Feb;21(1):4-13. [CrossRef] [PubMed]

5. Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006 Dec;34(6):785-8. [CrossRef] [PubMed]

6. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008 May;87(5):381-5. [CrossRef] [PubMed]

7. Scholz T, Krichevsky A, Sumarto A, Jaffurs D, Wirth GA, Paydar K, Evans GR. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009 Jul;25(6):339-44. [CrossRef] [PubMed]

8. Saadat S, Eslami V, Rahimi-Movaghar V. The incidence of peripheral nerve injury in trauma patients in Iran. Ulus Travma Acil Cerrahi Derg. 2011 Nov;17(6):539-44. [CrossRef] [PubMed]

9. Antoniadis G, Kretschmer T, Pedro MT, König RW, Heinen CP, Richter HP. Iatrogenic nerve injuries: prevalence, diagnosis and treatment. Dtsch Arztebl Int. 2014 Apr 18;111(16):273-9. [CrossRef] [PubMed] [PubMed Central]

10. Castillo-Galván ML, Martínez-Ruiz FM, de la Garza-Castro O, Elizondo-Omaña RE, Guzmán-López S. [Study of peripheral nerve injury in trauma patients]. Gac Med Mex. 2014 Nov-Dec;150(6):527-32. Spanish. [PubMed]

11. Missios S, Bekelis K, Spinner RJ. Traumatic peripheral nerve injuries in children: epidemiology and socioeconomics. J Neurosurg Pediatr. 2014 Dec;14(6):688-94. [CrossRef] [PubMed]

12. Dalamagkas K, Tsintou M, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res. 2015 May;10(5):726-42. [CrossRef] [PubMed] [PubMed Central]

13. Rosberg HE, Carlsson KS, Höjgård S, Lindgren B, Lundborg G, Dahlin LB. Injury to the human median and ulnar nerves in the forearm--analysis of costs for treatment and rehabilitation of 69 patients in southern Sweden. J Hand Surg Br. 2005 Feb;30(1):35-9. [CrossRef] [PubMed]

14. Immerman I, Price AE, Alfonso I, Grossman JA. Lower extremity nerve trauma. Bull Hosp Jt Dis (2013). 2014;72(1):43-52. [PubMed]

15. Wali AR, Park CC, Brown JM, Mandeville R. Analyzing cost-effectiveness of ulnar and median nerve transfers to regain forearm flexion. Neurosurg Focus. 2017 Mar;42(3):E11. [CrossRef] [PubMed]

16. Khalifeh JM, Dibble CF, Dy CJ, Ray WZ. Cost-Effectiveness Analysis of Combined Dual Motor Nerve Transfers versus Alternative Surgical and Nonsurgical Management Strategies to Restore Shoulder Function Following Upper Brachial Plexus Injury. Neurosurgery. 2019 Feb 1;84(2):362-377. [CrossRef] [PubMed]

17. Trehan SK, Model Z, Lee SK. Nerve Repair and Nerve Grafting. Hand Clin. 2016 May;32(2):119-25. [CrossRef] [PubMed]

18. Rasulić L. Introduction: Facing the Challenges of Peripheral Nerve Surgery in the 21st Century. World Neurosurg. 2015 Aug;84(2):596. [CrossRef] [PubMed]

19. Barton MJ, Morley JW, Stoodley MA, Lauto A, Mahns DA. Nerve repair: toward a sutureless approach. Neurosurg Rev. 2014 Oct;37(4):585-95. [CrossRef] [PubMed]

20. Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys. 2014 Apr;68(3):449-54. [CrossRef] [PubMed]

21. Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The Present and Future for Peripheral Nerve Regeneration. Orthopedics. 2017 Jan 1;40(1):e141-e156. [CrossRef] [PubMed]

22. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-Art Techniques in Treating Peripheral Nerve Injury. Plast Reconstr Surg. 2018 Mar;141(3):702-710. [CrossRef] [PubMed]

23. Chaudhry S, Ipaktchi KR, Ignatiuk A. Updates on and Controversies Related to Management of Radial Nerve Injuries. J Am Acad Orthop Surg. 2019 Mar 15;27(6):e280-e284. [CrossRef] [PubMed]

24. Narayan SK, Arumugam M, Chittoria R. Outcome of human peripheral nerve repair interventions using conduits: a systematic review. J Neurol Sci. 2019 Jan 15;396:18-24. [CrossRef] [PubMed]

25. Midha R, Grochmal J. Surgery for nerve injury: current and future perspectives. J Neurosurg. 2019 Mar 1;130(3):675-685. [CrossRef] [PubMed]

26. Liu GY, Jin Y, Zhang Q, Li R. Peripheral nerve repair: a hot spot analysis on treatment methods from 2010 to 2014. Neural Regen Res. 2015 Jun;10(6):996-1002. [CrossRef] [PubMed] [PubMed Central]

27. Forli A, Bouyer M, Aribert M, Curvale C, Delord M, Corcella D, Moutet F. Upper limb nerve transfers: A review. Hand Surg Rehabil. 2017 Jun;36(3):151-172. [CrossRef] [PubMed]

28. Eren A, Atalar H, Seymen CM, Alpaslan Pınarlı F, Take Kaplanoglu G, Turanlı S. Sutureless approach with vein grafts and mesenchymal stem cells in primary nerve repair: Functional and immunohistological results. Microsurgery. 2018 Oct;38(7):780-789. [CrossRef] [PubMed]

29. Bloom JD, Bleier BS, Goldstein SA, Carniol PJ, Palmer JN, Cohen NA. Laser facial nerve welding in a rabbit model. Arch Facial Plast Surg. 2012 Jan-Feb;14(1):52-8. [CrossRef] [PubMed]

30. Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells. 2015 Jan 26;7(1):11-26. [CrossRef] [PubMed] [PubMed Central]

31. Fairbairn NG, Ng-Glazier J, Meppelink AM, Randolph MA, Valerio IL, Fleming ME, Kochevar IE, Winograd JM, Redmond RW. Light-Activated Sealing of Acellular Nerve Allografts following Nerve Gap Injury. J Reconstr Microsurg. 2016 Jul;32(6):421-30. [CrossRef] [PubMed] Erratum in: J Reconstr Microsurg. 2016 Nov;32(9):e1.

32. Wang C, Oh S, Lee HA, Kang J, Jeong KJ, Kang SW, Hwang DY, Lee J. In vivo feasibility test using transparent carbon nanotube-coated polydimethylsiloxane sheet at brain tissue and sciatic nerve. J Biomed Mater Res A. 2017 Jun;105(6):1736-1745. [CrossRef] [PubMed]

33. Henderson PW. Immediate and complete restoration of peripheral nerve function after injury is attainable by a combination of surgical and chemical interventions. Med Hypotheses. 2018 Apr;113:65-67. [CrossRef] [PubMed]

34. Turner NJ, Johnson SA, Foster LJR, Badylak SF. Sutureless nerve repair with ECM bioscaffolds and laser-activated chitosan adhesive. J Biomed Mater Res B Appl Biomater. 2018 Jul;106(5):1698-1711. [CrossRef] [PubMed]

35. Wang W, Degrugillier L, Tremp M, Prautsch K, Sottaz L, Schaefer DJ, Madduri S, Kalbermatten D. Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement. Anat Rec (Hoboken). 2018 Oct;301(10):1690-1696. [CrossRef] [PubMed]

36. Soucy JR, Sani ES, Lara RP, Diaz D, Dias F, Weiss AS, et al. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. Tissue Engineering Part A. 2018;24(17-18):1393-405. [CrossRef] [PubMed] [PubMed Central]

37. Frost SJ, Mawad D, Hook J, Lauto A. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair. Adv Healthc Mater. 2016 Feb 18;5(4):401-14. [CrossRef] [PubMed]

38. Tsymbaliuk VI, Molotkovets VYu, Kvasha MS, Medvedev VV, Molotkovets KM, inventors. Romodanov Neurosurgery Institute, assignee. [A way to restore the spatial integrity of the injured peripheral nerve in mature male rats]. Patent of Ukraine 101497. 2015 September 10.

39. SAGES Manual on the Fundamental Use of Surgical Energy (FUSE). Sages Manual on the Fundamental Use of Surgical Energy (Fuse). 2012:1-266. [CrossRef] [PubMed] [PubMed Central]

40. Madani A, Jones DB, Fuchshuber P, Robinson TN, Feldman LS. Fundamental Use of Surgical Energy™ (FUSE): a curriculum on surgical energy-based devices. Surg Endosc. 2014 Sep;28(9):2509-12. [CrossRef] [PubMed]

41. Wang K, Advincula AP. “Current thoughts” in electrosurgery. Int J Gynaecol Obstet. 2007 Jun;97(3):245-50. [CrossRef] [PubMed]

42. Massarweh NN, Cosgriff N, Slakey DP. Electrosurgery: history, principles, and current and future uses. J Am Coll Surg. 2006 Mar;202(3):520-30. [CrossRef] [PubMed]

43. Greenwood J Jr. Two point coagulation: a follow-up report of a new technic and instrument for electrocoagulation in neurosurgery. Arch Phys Ther. 1942 Sep;23(9):552-4. [PubMed]

44. Malis LI. Electrosurgery and bipolar technology. Neurosurgery. 2006 Feb;58(1 Suppl):ONS1-12; discussion ONS1-12. [CrossRef] [PubMed]

45. Kennedy JS, Stranahan PL, Taylor KD, Chandler JG. High-burst-strength, feedback-controlled bipolar vessel sealing. Surg Endosc. 1998 Jun;12(6):876-8. [CrossRef] [PubMed]

46. Song C, Tang B, Campbell PA, Cuschieri A. Thermal spread and heat absorbance differences between open and laparoscopic surgeries during energized dissections by electrosurgical instruments. Surg Endosc. 2009 Nov;23(11):2480-7. [CrossRef] [PubMed]

47. Wham RH, Buysse SP, Orszulak JH, inventors; Covidien AG, assignee. Vessel sealing system. United States patent US 7,364,577. 2008 Apr 29.

48. Okhunov Z, Yoon R, Lusch A, Spradling K, Suarez M, Kaler KS, Patel R, Hwang C, Osann K, Huang J, Lee T, Landman J. Evaluation and Comparison of Contemporary Energy-Based Surgical Vessel Sealing Devices. J Endourol. 2018 Apr;32(4):329-337. [CrossRef] [PubMed] [PubMed Central]

49. Kramer EA, Rentschler ME. Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery. Annu Rev Biomed Eng. 2018 Jun 4;20:1-20. [CrossRef] [PubMed]

50. Molotkovets V, Tsymbaliuk V, Chaikovsky Y, Korsak A, Likhodiievskyi V. [Regenerative neuroma of injured peripheral nerve after immediate nerve stump’s epineurium welding and partial hindlimb immobilization]. World of Medicine and Biology. 2017;13(62):152. Ukrainian. [CrossRef]

51. Tsymbaliuk VI, Molotkovets VY, Medvediev VV, Luzan BM, Turuk LS, Tatarchuk ММ, Draguntsova NG. [Electroneuromyographic correlates of sciatic nerve function restoration after its resection and welded epineural coaptation in the experiment]. Ukrainian Neurosurgical Journal. 2017;(2):44-9. Ukrainian. [CrossRef]

52. Tsymbaliuk VI, Molotkovets VYu, Medvediev VV, Luzan BM, Petriv TI. [Efficiency weld the damaged peripheral nerve rat according to estimates sciatic nerve functional index]. Ukrainian Neurological Journal. 2017;(2):63-8. Ukrainian.

53. Molotkovets VY. [Morphological changes of the nerve after restorative treatment using electric welding technology (experimental study)]. Endovascular Neuroradiology. 2019 Jun 13;27(1):91-8. Ukrainian. [CrossRef]

54. Tsymbalyuk VI, Medvediev VV, Molotkovets VYu, Korsak AV, Chaykovskyy YuB. Restoration of the integrity of the transected peripheral nerve using a technology of electric welding under experimental conditions. Neurophysiology. 2020;52(1):38-49. [CrossRef]

55. Dellon ES, Dellon AL. Functional assessment of neurologic impairment: track analysis in diabetic and compression neuropathies. Plast Reconstr Surg. 1991 Oct;88(4):686-94. [CrossRef] [PubMed]

56. Varejão AS, Meek MF, Ferreira AJ, Patrício JA, Cabrita AM. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods. 2001 Jul 15;108(1):1-9. [CrossRef] [PubMed]

57. Tsymbalik VI, Molotkovets VYu, Petriv TI, Medvediev VV, Luzan BM, inventors. Bogomolets National Medical University, assignee. [The device for the test “walking on the track”]. Patent of Ukraine 118157. 2017 Jul 25.

58. Tsymbalik VI, Molotkovets VYu, Petriv TI, Medvediev VV, Luzan BM, inventors. Bogomolets National Medical University, assignee. [Method for determining the functional index of the sciatic nerve in rats]. Patent of Ukraine 118156. 2017 Jul 25.

59. Bain JR, Mackinnon SE, Hudson AR, Falk RE, Falk JA, Hunter DA, Makino A. Preliminary report of peripheral nerve allografting in primates immunosuppressed with cyclosporin A. Transplant Proc. 1989 Feb;21(1 Pt 3):3176-7. [PubMed]

60. Carlton J, Goldberg N. Quantitating integrated muscle function following reinnervation. Surg Forum. 1986;37:611–614.

61. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996 Mar;3(3):212-8. [CrossRef] [PubMed]

62. Overgaard K, Nielsen OB, Flatman JA, Clausen T. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients. J Physiol. 1999 Jul 1;518(Pt 1):215-25. [CrossRef] [PubMed] [PubMed Central]

63. Scaglioni G, Narici MV, Maffiuletti NA, Pensini M, Martin A. Effect of ageing on the electrical and mechanical properties of human soleus motor units activated by the H reflex and M wave. J Physiol. 2003 Apr 15;548(Pt 2):649-61. [CrossRef] [PubMed] [PubMed Central]

64. Tan AM, Chakrabarty S, Kimura H, Martin JH. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia. J Neurosci. 2012 Sep 12;32(37):12896-908. [CrossRef] [PubMed] [PubMed Central]

65. Call JA, Warren GL, Verma M, Lowe DA. Acute failure of action potential conduction in mdx muscle reveals new mechanism of contraction-induced force loss. J Physiol. 2013 Aug 1;591(15):3765-76. [CrossRef] [PubMed] [PubMed Central]

66. Liu J, Li S, Li X, Klein C, Rymer WZ, Zhou P. Suppression of stimulus artifact contaminating electrically evoked electromyography. NeuroRehabilitation. 2014;34(2):381-9. [CrossRef] [PubMed] [PubMed Central]

67. Cattagni T, Lepers R, Maffiuletti NA. Effects of neuromuscular electrical stimulation on contralateral quadriceps function. J Electromyogr Kinesiol. 2018 Feb;38:111-118. [CrossRef] [PubMed]

68. Kolomiĭtsev AK, Chaikovskiĭ IuB, Tereshchenko TL. [Rapid method of silver nitrate impregnation of elements of the peripheral nervous system suitable for celloidin and paraffin sections]. Arkh Anat Gistol Embriol. 1981 Aug;81(8):93-6. Russian. [PubMed]

69. Tsymbaliuk VI, Chebotariova LL, Tretyakova AI, Zhylinska HV. Electrophysiological methods of diagnostics in neurosurgery. Kyiv: Fakt; 2005. Ukrainian.

70. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998 Jul;45(1):116-22. [CrossRef] [PubMed]

71. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-Art Techniques in Treating Peripheral Nerve Injury. Plast Reconstr Surg. 2018 Mar;141(3):702-710. [CrossRef] [PubMed]

72. Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci. 2017 Jan 5;18(1). pii: E94. [CrossRef] [PubMed] [PubMed Central]

73. Ukrainian Database of Medical and Statistical Information [Internet]. Center for Medical Statistics of the Ministry of Health of Ukraine; 2018. Ukrainian. [cited 2020 February 17]. Available from: http://medstat.gov.ua/ukr/news.html?id=242

74. Alekseenko SN, Drobot EV. Disease Prevention. Moscow: Akademiya Yestestvoznaniya. 2015. Russian. https://monographies.ru/en/book/view?id=524

75. Life expectancy in Ukraine [Internet]. Wikipedia; 2020. Ukrainian. [cited 2020 February 17]. Available from: https://uk.wikipedia.org/wiki/Тривалість_життя_в_Україні

76. Vela FJ, Martínez-Chacón G, Ballestín A, Campos JL, Sánchez-Margallo FM, Abellán E. Animal models used to study direct peripheral nerve repair: a systematic review. Neural Regen Res. 2020 Mar;15(3):491-502. [CrossRef] [PubMed] [PubMed Central]

77. Bhatt NK, Mejias C, Kallogjeri D, Gale DC, Park AM, Paniello RC. Potassium titanyl phosphate laser welding following complete nerve transection. Laryngoscope. 2017 Jul;127(7):1525-1530. [CrossRef] [PubMed]

78. Félix SP, Pereira Lopes FR, Marques SA, Martinez AM. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery. 2013 Sep;33(6):468-77. [CrossRef] [PubMed]

79. Menovsky T, Beek JF. Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J Neurosurg. 2001 Oct;95(4):694-9. [CrossRef] [PubMed]

80. Martins RS, Siqueira MG, Silva CF, Godoy BO, Plese JP. Electrophysiologic assessment of regeneration in rat sciatic nerve repair using suture, fibrin glue or a combination of both techniques. Arq Neuropsiquiatr. 2005 Sep;63(3A):601-4. [CrossRef] [PubMed]

81. Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, Ferreira RS Junior, Filadelpho AL, Matheus SMM. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury. 2019 Apr;50(4):834-847. [CrossRef] [PubMed]

82. Maciel FO, Viterbo F, Chinaque Lde F, Souza BM. Effect of electrical stimulation of the cranial tibial muscle after end-to-side neurorrhaphy of the peroneal nerve in rats. Acta Cir Bras. 2013 Jan;28(1):39-47. [CrossRef] [PubMed]

83. Willand MP, Chiang CD, Zhang JJ, Kemp SW, Borschel GH, Gordon T. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats. Neurorehabil Neural Repair. 2015 Aug;29(7):690-700. [CrossRef] [PubMed]

84. Eren A, Atalar H, Seymen CM, Alpaslan Pınarlı F, Take Kaplanoglu G, Turanlı S. Sutureless approach with vein grafts and mesenchymal stem cells in primary nerve repair: Functional and immunohistological results. Microsurgery. 2018 Oct;38(7):780-789. [CrossRef] [PubMed]

85. Waller A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres. Edinb Med Surg J. 1851 Oct 1;76(189):369-376. [PubMed] [PubMed Central]

86. Vargas ME, Barres BA. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci. 2007;30:153-79. [CrossRef] [PubMed]

87. Doron-Mandel E, Fainzilber M, Terenzio M. Growth control mechanisms in neuronal regeneration. FEBS Lett. 2015 Jun 22;589(14):1669-77. [CrossRef] [PubMed]

88. Chang B, Quan Q, Lu S, Wang Y, Peng J. Molecular mechanisms in the initiation phase of Wallerian degeneration. Eur J Neurosci. 2016 Aug;44(4):2040-8. [CrossRef] [PubMed]

89. Geden MJ, Deshmukh M. Axon degeneration: context defines distinct pathways. Curr Opin Neurobiol. 2016 Aug;39:108-15. [CrossRef] [PubMed] [PubMed Central]

90. Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol. 2018 Oct;78(10):978-990. [CrossRef] [PubMed]

91. Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD(+) point of view. Neurosci Res. 2019 Feb; 139:9-20. [CrossRef] [PubMed] [PubMed Central]

92. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015 Aug 27;302:174-203. [CrossRef] [PubMed] [PubMed Central]

93. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015 Nov;130(5):605-18. [CrossRef] [PubMed]

94. Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019 Aug;14(8):1335-1342. [CrossRef] [PubMed] [PubMed Central]

95. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019 Feb;173:102-121. [CrossRef] [PubMed] [PubMed Central]

96. Benarroch EE. Acquired axonal degeneration and regeneration: Recent insights and clinical correlations. Neurology. 2015 May 19;84(20):2076-85. [CrossRef] [PubMed]

97. Fawcett JW, Verhaagen J. Intrinsic Determinants of Axon Regeneration. Dev Neurobiol. 2018 Oct;78(10):890-897. [CrossRef] [PubMed]

98. Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol. 2018 Oct;78(10):898-925. [CrossRef] [PubMed]

99. Wong KM, Babetto E, Beirowski B. Axon degeneration: make the Schwann cell great again. Neural Regen Res. 2017 Apr;12(4):518-524. [CrossRef] [PubMed] [PubMed Central]

100. Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Frontiers in Cellular Neuroscience. 2019;13. [CrossRef] [PubMed] [PubMed Central]

101. Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Frontiers in Cellular Neuroscience. 2019;13. [CrossRef] [PubMed] [PubMed Central]

102. Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol. 2016 Aug;39:38-46. [CrossRef] [PubMed]

103. Frew JW. Performing surgery with a single electron: electrosurgery and quantum mechanics. Anz Journal of Surgery. 2009;79(10):680-2. [CrossRef] [PubMed]

104. Lazarenko VA, Privalova IL, Lipatov VA, Zatolokina MA, Gamazinov IN, Proskurina IV. [Morphological criteria for traumatic injury of the sedimal nerve and environmental its tissues in experimental research on laboratory rats (review of literature)]. Innova. 2016;(4(5)):34-39. Russian. https://www.elibrary.ru/item.asp?id=35550937

105. Paton BE. Welding and related technologies for medical applications. The Paton Welding Journal. 2008;(11):11-19. https://patonpublishinghouse.com/tpwj/pdf/2008/tpwj200811all.pdf

106. Ruch DS, Smith AM. Articulating external fixation to overcome nerve gaps in lower extremity trauma. J Orthop Trauma. 2003 Apr;17(4):290-4. [CrossRef] [PubMed]

107. Bai L, Wang TB, Wang X, Zhang WW, Xu JH, Cai XM, Zhou DY, Cai LB, Pan JD, Tian MT, Chen H, Zhang DY, Fu ZG, Zhang PX, Jiang BG. Use of nerve elongator to repair short-distance peripheral nerve defects: a prospective randomized study. Neural Regen Res. 2015 Jan;10(1):79-83. [CrossRef] [PubMed] [PubMed Central]

108. Socolovsky M, Bataglia D, Barousse R, Robla-Costales J. Use of ultrasound and targeted physiotherapy in the management of a nerve suture performed under joint flexion. Acta Neurochirurgica. 2018;160(8):1597-601. [CrossRef] [PubMed]

109. Revol M, Servant JM, Banzet P. [Technic of suturing a peripheral nerve]. J Chir (Paris). 1988 Jan;125(1):48-51. French. [PubMed]

110. Kontogeorgakos VA, Mavrogenis AF, Megaloikonomos PD, Panagopoulos GN, Koutalos A, Vekris MD. Bifid median nerve complete transection at the wrist. Journal of long-term effects of medical implants. 2016;26(4). [CrossRef] [PubMed]

111. Tirelli G, Camilot D, Bonini P, Del Piero GC, Biasotto M, Quatela E. Harmonic Scalpel and Electrothermal Bipolar Vessel Sealing System in Head and Neck Surgery: A Prospective Study on Tissue Heating and Histological Damage on Nerves. Annals of Otology Rhinology and Laryngology. 2015;124(11):852-8. [CrossRef] [PubMed]

112. Landman J, Kerbl K, Rehman J, Andreoni C, Humphrey PA, Collyer W, Olweny E, Sundaram C, Clayman RV. Evaluation of a vessel sealing system, bipolar electrosurgery, harmonic scalpel, titanium clips, endoscopic gastrointestinal anastomosis vascular staples and sutures for arterial and venous ligation in a porcine model. J Urol. 2003 Feb;169(2):697-700. [CrossRef] [PubMed]

113. Lachanas VA, Hajiioannou JK, Karatzias GT, Filios D, Koutsias S, Mourgelas C. Comparison of LigaSure vessel sealing system, harmonic scalpel, and cold knife tonsillectomy. Otolaryngol Head Neck Surg. 2007 Sep;137(3):385-9. [CrossRef] [PubMed]

114. Manouras A, Markogiannakis HE, Kekis PB, Lagoudianakis EE, Fleming B. Novel hemostatic devices in thyroid surgery: electrothermal bipolar vessel sealing system and harmonic scalpel. Expert Review of Medical Devices. 2008;5(4):447-66. [CrossRef] [PubMed]

115. Zhang L, Li N, Yang X, Chen J. A meta-analysis comparing the outcomes of LigaSure Small Jaw versus clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy. Medicine. 2017;96(11). [CrossRef] [PubMed] [PubMed Central]

116. Bangash A, Khan N, Azeem I, Sadiq M. Technique of clamp-tie thyroidectomy versus Harmonic focus R. Is there a need for technology? Journal of the Scientific Society. 2014;41(1):10. [CrossRef]

117. Navarro X, Udina E. Methods and protocols in peripheral nerve regeneration experimental research: part iii-electrophysiological evaluation. Essays on Peripheral Nerve Repair and Regeneration. 2009;87:105-26. [CrossRef] [PubMed]

118. Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials. 2012;33(32):8034-9. [CrossRef] [PubMed] [PubMed Central]

119. Geuna S. The sciatic nerve injury model in pre-clinical research. Journal of Neuroscience Methods. 2015;243:39-46. [CrossRef] [PubMed]

120. Kemp SWP, Cederna PS, Midha R. Comparative outcome measures in peripheral regeneration studies. Experimental Neurology. 2017;287:348-57. [CrossRef] [PubMed]

121. Rigoni M, Montecucco C. Animal models for studying motor axon terminal paralysis and recovery. Journal of Neurochemistry. 2017;142:122-9. [CrossRef] [PubMed]

122. Mackinnon SE, Dellon AL, Hudson AR, Hunter DA. A primate model for chronic nerve compression. J Reconstr Microsurg. 1985 Jan;1(3):185-95. [CrossRef] [PubMed]

123. Dellon AL, Mackinnon SE. Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery. 1989;10(3):220-5. [CrossRef] [PubMed]

124. Ganguly A, McEwen C, Troy EL, Colburn RW, Caggiano AO, Schallert TJ, et al. Recovery of sensorimotor function following sciatic nerve injury across multiple rat strains. Journal of Neuroscience Methods. 2017;275:25-32. [CrossRef] [PubMed]

125. Gutmann E. Factors affecting recovery of motor function after nerve lesions. J.Neurol Psychiatry. 1942 Jul;5(3-4):81-95. [PubMed] [PubMed Central]

126. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982 Sep;77(3):634-43. [CrossRef] [PubMed]

127. de Medinaceli L, DeRenzo E, Wyatt RJ. Rat sciatic functional index data management system with digitized input. Comput Biomed Res. 1984 Apr;17(2):185-92. [CrossRef] [PubMed]

128. Mendonça AC, Barbieri CH, Mazzer N. Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods. 2003 Oct 30;129(2):183-90. [CrossRef] [PubMed]

129. Raso VV, Barbieri CH, Mazzer N, Fasan VS. Can therapeutic ultrasound influence the regeneration of peripheral nerves? J Neurosci Methods. 2005 Mar 30;142(2):185-92. [CrossRef] [PubMed]

130. Monte-Raso VV, Barbieri CH, Mazzer N, Yamasita AC, Barbieri G. Is the Sciatic Functional Index always reliable and reproducible? Journal of Neuroscience Methods. 2008;170(2):255-61. [CrossRef] [PubMed]

131. Dinh P, Hazel A, Palispis W, Suryadevara S, Gupta R. Functional assessment after sciatic nerve injury in a rat model. Microsurgery. 2009;29(8):644-9. [CrossRef] [PubMed]

132. Schiaveto de Souza A, da Silva CA, Del Bel EA. Methodological evaluation to analyze functional recovery after sciatic nerve injury. J Neurotrauma. 2004 May;21(5):627-35. [CrossRef] [PubMed]

133. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain. 1979 Oct;7(2):103-11. [CrossRef] [PubMed]

134. Coderre TJ, Grimes RW, Melzack R. Autotomy following sciatic and saphenous nerve sections - sparing of the medial toes after treatment of the sciatic-nerve with capsaicin. Experimental Neurology. 1986;91(2):355-65. [CrossRef] [PubMed]


GOST Style Citations






Copyright (c) 2020 Vitaliy I. Tsymbaliuk, Volodymyr V. Medvediev, Pavlo V. Ivanchov, Vitaliy Yu. Molotkovets, Yuriy B. Chaikovsky, Alina V. Korsak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.