Use of dendritic cells in the immunotherapy of malignant brain tumors

Authors

  • I. A. Medyanik Nizhny Novgorod Interregional Neurosurgical Center, Nizhny Novgorod, Russian Federation
  • A. P. Fraerman Nizhny Novgorod Interregional Neurosurgical Center, Nizhny Novgorod, Russian Federation
  • A. E. Bokov Nizhny Novgorod Interregional Neurosurgical Center, Nizhny Novgorod, Russian Federation

Keywords:

malignant brain tumors, immunotherapy, vaccines, dendritic cells

Abstract

Use of the vaccines prepared from dendritic cells, is the most perspective method of development of immunotherapy of malignant tumors of a brain. Now this method of treatment is the most effective in comparison to all of others and is used in neurooncology.

However many mechanisms of immunological disturbances due to malignant tumors of the brain have not been completely investigated. There are poorly known and demand perfection techniques in the preparation of vaccines. Therefore today, this problem is rather actual and demands its careful studying and investigation.

 

References

Болдуева И.Л. Противоопухолевые вакцины на основе дендритных клеток. Опыт НИИ онкологии им. проф. Н.Н. Петрова // I Всерос. науч.-практ. конф. “Биотерапия рака”. — М., 2002. — С.10–13.

Макаренкова В. П., Кост Н. В., Щурин М. Р. Система дендритных клеток: роль в индукции иммунитета, в патогенезе инфекционных, аутоиммунных и онкологических заболеваний // Иммунология. — 2002. — №2. — С.68–76.

Молчанов О.Е. Попова И.А. Козлов В.К. Карелин М.И. Современные тенденции иммунотерапии злокачественных опухолей. — СПб, 2001. — 88 c.

Москалева Е.Ю., Северин С.Е. Перспективы создания противоопухолевых вакцин с использованием дендритных клеток человека // Иммунология. — 2002. — №1. — C.8–15.

Москалева Е.Ю., Родина А.В., Луценко С.В. и др. Теоретические основы и подготовительный этап использования дендритных клеток для биотерапии рака // I Всерос. науч.-практ. конф. “Биотерапия рака”. — М., 2002. — С.66–68.

Олюшин В.Е., Тиглиев Г.С., Острейко О.В., Филатов М.В. Иммунотерапия у пациентов с продолженным ростом глиобластом головного мозга // 6-й междунар. симп. “Современные минимально-инвазивные технологии”. — СПб, 2001. — С.265–269.

Острейко О.В. Продолженный рост злокачественных глиом супратенториальной локализации: повторные операции, катамнез и некоторые вопросы комбинированного лечения: Автореф. дис. ... канд. мед наук. — СПб, 2001. — 23 с.

Острейко О.В., Олюшин В.Е., Тиглиев Г.С. и др. Противоопухолевая иммунотерапия у больных с продолженным ростом глиобластом: оценка результатов лечения // Нейрохирургия. — 2003. — №4. — С.40–44.

Пащенков М.В., Пинегин Б.В. Основные свойства дендритных клеток // Иммунология. — 2001. — №4. — С.7–16.

Пащенков М.В., Пинегин Б.В. Роль дендритных клеток в регуляции иммунного ответа // Иммунология. — 2002. — №5. — C.313–321.

Чкадуа Г.З., Заботина Т.Н., Буркова АЛ. и др. Влияние условий культивирования на процентное содержание зрелых форм дендритных клеток человека // I Всерос. науч.-практ. конф. “Биотерапия рака”. — М., 2002. — С.132–135.

Albert M.L., Darnell J.C., Bender A. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration // Nat. Med. — 1998. — V.4. — P. 321–1324.

Aoki H., Mizuno M., Natsume A. et al. Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor // Cancer Immunol. Immunother. — 2001. — V.50. — P.463–468.

Biron С.А. Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections // Seminars. Immunol. — 1998. — V.10. — P.383–390.

Caux C., Massacrier C., Dezutter-Dambuyant C. et al. Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen // J. Immunol. — 1995. — V.155. — P.5427–5435.

Caux C., Massacrier C., Dubois B. et al. Respective involvement of TGF-beta and IL–4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors // J. Leukoc. Biol. — 1999. — V.66. — P.781–791.

Chaux P., Favre N., Martin M., Martin F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats // Int. J. Cancer. — 1997. — V.72. — P.619–624.

Coppola D., Fu L., Nicosia S. V. et al. Prognostic significance of p53, bcl–2, vimentin, and S100 protein-positive Langerhans cells in endometrial carcinoma // Hum. Pathol. — 1998. — V.29. — P.455–462.

Ehtesham M., Kabos P., Gutierrez M.A. et al. Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats // J. Immunother. — 2003. — V.26 — P.107–116.

Enk A. H., Jonuleit H., Saloga J., Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma // Int. J. Cancer. — 1997. — V.73. — P.309–316.

Gong J., Chen D., Kashiwaba M., Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells // Nature. — 1997. — V.3. — P.558–561.

Heimberger A.B., Crotty L.E., Archer G.E. et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma // J. Neuroimmunol. — 2000. — V.103. — P.16–25.

Herr W., Linn B., Leister N. et al. The use of computer-assisted video image analysis for the quantification of CD8+ T-lymphocytes producing tumor necrosis factor alpha spots in response to peptide antigens // J. Immunol. Methods. — 1997. — V.203. — P.141–152.

Inaba K., Pack M., Inaba M. et al. High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T-cell areas of lymph nodes // J. Exp. Med. — 1997. — V.186. — P.665–672.

Insug O., Ku G., Ertl HC. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma // Anticancer Res. — 2002. — V.22. — P.613–621.

Kobayashi T., Yamanaka R., Homma J. et al. Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8(+) cytotoxic T cells in patients with malignant glioma // Cancer Immunol. Immunother. — 2003. — V.52. — P.632–637.

Liau L.M., Black K.L., Prins R.M. et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens // J. Neurosurg. — 1999. — V.90. — P.1115–1124.

Lotze M.T. Dendritic cells as therapeutic reagents for the treatment of patients with cancer // Ann. Surg. — 1997. — V.226. — P.1–5.

Luft T., Jefford M., Luetjens P. et al. IL–1 beta enhances CD40 ligand-mediated cytokine secretion by human dendritic cells (DC): a mechanism for T cell-independent DC activation // J. Immunol. — 2002. — V.168. — P.713–722.

Lynch D.H., Andreasen A., Maraskovsky E. et al. Flt3 ligand induces tumor regression and antitumor immune responses in vivo // Nat. Med. — 1997. — V.3. — P.625–631.

Mackensen A., Herbst B., Chen J.L. et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells // Int. J. Cancer. — 2000. — V.86. — P.385–392.

Nair S.K, Hull S., Coleman D. et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA // Int. J. Cancer. –1999. — V.82. — P.121–124.

Pulendran В., Banchereau J., Burkeholder S. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo // J. Immunol. — 2000. — V.165. — P.566–572.

Romani N., Reider D., Heuer M. et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability // J. Immunol. Methods. — 1996. — V.196. — P.137–151.

Sallusto P., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha // J. Exp. Med. — 1994. — V.179. — P.1109–1118.

Saunders D., Lukas K., Ismaili J. et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor // J. Exp. Med. — 1996. — V.184, N6. — P.2185–2196.

Schakel K., Mayer E. L., Federle Ch. et al. A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes // Europ. J. Immunol. — 1998. — V.28. — P.4084–4093.

Scheibenbogen C., Lee K.H., Stevanovic S. et al. Analysis of the T cell response to tumor and viral peptide antigens by an IFNgamma — ELISPOT assay // Int. J. Cancer. — 1997. — V.71. — P.932–936.

Schreiver F., Nadler L. M. The central role of follikular dendritic cells in limphoid tissues // Adv. Immunol. — 1992. — V.51. — P.243–283.

Shortman K., Caux C. Dendritic cell development: multiple pathways to nature’s adjuvants // Stem Cells. — 1997. — V.15. — P.409–419.

Shurin M. R., Esche C., Lotze M. T. Flt3: receptor and ligand. Biology and potential clinical application // Cytokine Growth Factor Rev. — 1998. — V.9. — P.37–48.

Steinbach F., Krause D. Development of accessory phenotype and function during the differentiation of monocyte-derived dendritic cells // Res. Immunol. — 1998. — V.149. — P.627–632.

Steinbrink K., Jonuleit H., Muller G. et al. Interleukin–10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+ T-cells resulting in a failure to lyse tumor cells // Blood. — 1999. — V.93. — P.1634–1642.

Stockwin K. H., McGonagle D., Martin I. G., Blair G. E. Dendritic cells: immunological sentinels with a central role in health and disease // Immunol. Cell Biol. — 2000. — V.78. — P.91 — 102.

Takagi Y., Kikuchi T., Niimura M., Ohno T. Effects of glucocorticoids on antitumor effects of immunizations with fusions of dendritic and tumor cells // Anticancer Res. — 2003. — V.23. — P.2553–2558.

Wallenfriedman M.A., Conrad J.A., DelaBarre L. et al. Effects of continuous localized infusion of granulocyte-macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor regression // J. Neurosurg. — 1999. — V.90. — P.1064–1071.

Wilson J. L., Charo J., Martin-Fontecha A. et al. NK cell triggering by the human costimulatory molecules CD80 and CD86 // J. Immunol. — 1999. — V.163. — P.4207–4212.

Yamanaka R., Tsuchiya N., Yajima N. et al. Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin–18 combined with the systemic administration of interleukin–12 // J. Neurosurg. — 2003. — V.99. — P.746–753.

Yamanaka R., Yajima N., Abe T. et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial // Int. J. Oncol. — 2003. — V.23. — P.5–15.

Yamanaka R., Yajima N., Tsuchiya N. et al. Administration of interleukin–12 and –18 enhancing the antitumor immunity of genetically modified dendritic cells that had been pulsed with Semliki forest virus-mediated tumor complementary DNA // J. Neurosurg. — 2002. — V.97. — P.1184–1190.

Yamanaka R., Zullo S.A., Tanaka R. et al. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA // J. Neurosurg. — 2001. — V.94. — P.474–481.

Yang T., Witham T.F., Villa L. et al. Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas // Cancer Res. — 2002. — V.62. — P.2583–2591.

Yoshida S., Morii K., Watanabe M. et al. The generation of anti-tumoral cells using dendritic cells from the peripheral blood of patients with malignant brain tumors // Cancer Immunol. Immunother. — 2001. — V.50. — P.321–327.

Yu J.S., Wheeler C.J., Zeltzer P.M. et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration // Cancer Res. — 2001. — V.61. — P.842–847.

How to Cite

Medyanik, I. A., Fraerman, A. P., & Bokov, A. E. Use of dendritic cells in the immunotherapy of malignant brain tumors. Ukrainian Neurosurgical Journal, (3), 21–28. Retrieved from https://theunj.org/article/view/144405

Issue

Section

Review articles