Viruses in human central nervous system — invasion, transmission, and latency: a literature review

Vitaliy I. Tsymbaliuk, Iryna H. Vasileva

Abstract


Central nervous system (CNS) viruses are the problem of global significance that is not yet fully evaluated. There are known more than 30 groups of RNA viruses and more than 20 groups of DNA viruses known which can affect the human central nervous system. According to WHO data, up to 95 % of the world population is infected with the herpesvirus family of viruses (HHV) – HHV1, HHV2, HHV6, HHV7, HHV8, HCMV, EBV, VZV and papovaviruses (JC).

Invasion of the most CNS viruses begins at the periphery with infection of by infecting epithelial or endothelial cells. The introduction of viruses into the cell is performed invade cells through the interaction with receptors. Currently, there are known several pathways of viruses penetration into the central nervous system: a straight path – the viruses from the site of local infection are directly introduced penetrate into the nerve endings of the peripheral or central nervous system; “Trojan horse” – the transporters of these viruses are leukocytes infected with the virus; mechanism of CNS damage mediated by immune system consisting in the fact that local destruction of the blood-brain barrier is achieved as a result of due to immune cells activation and local production of cytokines.

After penetration into the neuronal cell, viruses are moved through its structures and are transmitted migrate into other neuronal cells. When reaching the cell body, viral nucleic acid is replicated and mRNA and proteins are expressed. After replication the dissemination of viral particles is also carried out involving the microtubule transport system.

Now, an understanding of the molecular mechanisms controlling the spread of viruses in the nervous system is not formed. Viruses interact with host cells through many metabolic pathways. Severe pathology is developed in case of insufficiency of aggregate response to viral invasion.


Keywords


CNS viruses; virus invasion into CNS; virus transmission into CNS; latency of CNS viruses

References


1. Boggian I, Buzzacaro E, Calistri A, Calvi P, Cavaggioni A, Mucignat-Caretta C, Palu G. Asymptomatic herpes simplex type 1 virus infection of the mouse brain. J Neurovirol. 2000 Aug;6(4):303-13. [PubMed]

2. Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol. 2013 Oct;87(19):10477-88. [CrossRef] [PubMed] [PubMed Central]

3. Bach LM. Regional physiology of the central nervous system. Prog Neurol Psychiatry 1963;18:46–106. [PubMed]

4. Liedtke W, Opalka B, Zimmermann CW, Lignitz E Age distribution of latent herpes simplex virus 1 and varicella-zoster virus genome in human nervous tissue. J Neurol Sci. 1993;116(1):6–11. [PubMed]

5. Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, Jacobson S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci U S A. 2011;108(33):13734–9. [CrossRef] [PubMed]

6. Cassiani-Ingoni R, Greenstone HL, Donati D, Fogdell-Hahn A, Martinelli E,Refai D, Martin R, Berger EA, Jacobson S. CD46 on glial cells can function as a receptor for viral glycoprotein-mediated cell-cell fusion. Glia. 2005;52(3):252-258. [CrossRef] [PubMed]

7. Plourde JR, Pyles JA, Layton RC, Vaughan SE, Tipper JL, Harrod KS. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions. PLoS. 2012;7(10):e46605. [CrossRef] [PubMed]

8. Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U. Local type I IFN receptor signaling protects against virus spread within the centralnervous system. J Immunol. 2009;182(4):2297–2304. [CrossRef] [PubMed]

9. Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol. 2005;11(2):129–137. [CrossRef] [PubMed]

10. Dups J, Middleton D, Yamada M, Monaghan P, Long F, Robinson R, Marsh GA, Wang LF.A new model for Hendra virus encephalitis in the mouse. PLoS One. 2012;7(7):e40308. PLoS One. 2012;7(7):e40308. [CrossRef] [PubMed]

11. Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol. 2007;88(Pt 9):2363–2377. [CrossRef] [PubMed]

12. Bennett RS, Cress CM, Ward JM, Firestone CY, Murphy BR, Whitehead SS. La Crosse virus infectivity, pathogenesis, and immunogenicity in mice and monkeys. Virol J. 2008;5:1–15. [CrossRef] [PubMed]

13. Ohka S, Nihei C, Yamazaki M, Nomoto A. Poliovirus trafficking toward central nervous system via human poliovirus receptordependent and -independent pathway. Front Microbiol. 2012;3:147- 153. [CrossRef] [PubMed]

14. Kuss SK, Etheredge CA, Pfeiffer JK. Multiple host barriers restrict poliovirus trafficking in mice. PLoS Pathog. 2008;4(6):el000082. [CrossRef] [PubMed]

15. Ugolini G. Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res. 2011;79:165–202. [CrossRef] [PubMed]

16. McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol. 2011;11(5):318–329. [CrossRef] [PubMed]

17. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associateddementia. Nature. 2001;410(6831):988–994. [CrossRef] [PubMed]

18. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH.Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–790. [CrossRef] [PubMed]

19. Boothpur R, Brennan DC. Human polyoma viruses and disease with emphasis on clinical BK and JC. J Clin Virol. 2010;47(4):306–312. [CrossRef] [PubMed]

20. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593–606. [CrossRef] [PubMed]

21. Shukla V, Shakya AK, Shukla M, Kumari N, Krishnani N, Dhole TN, Misra UK Circulating levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases during Japanese encephalitis virus infection. Virusdisease. 2016;27(1):63-76. [CrossRef] [PubMed]

22. Hou J, Baker LA, Zhou L, Klein RS Viral interactions with the blood-brain barrier: old dog, new tricks. Tissue Barriers. 2016;4(1):e1142492. [CrossRef] [PubMed]

23. Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, Wang C, Song Z, Li S, Li X, Lv X, Qu X, Huang R, Liu W. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology. 2016;59(3):163-169. [CrossRef] [PubMed]

24. Watanabe M, Suyama K, Hashimoto K, Sato M, Ohara S, Abe Y, Kawasaki Y, Yamaguchi S, Saijo M, Hosoya M.Mumps Virus-Associated Acute Encephalopathy: Case Report and Review of the Literature. J Child Neurol. 2012;28(2):243-245. [CrossRef] [PubMed]

25. Buchanan R, Bonthius DJ. Measles virus and associated central nervous system seguelae. SeminPediatr Neurol. 2012;19(3):107–114. [CrossRef] [PubMed]

26. Fantetti KN, Gray EL, Ganesan P, Kulkarni A,O’Donnell LA.Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain. J Neuroinflammation. 2016;13(1):107. [CrossRef] [PubMed]

27. Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR.Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology. 2010;397(1):130– 138. [CrossRef] [PubMed]

28. Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM, Stamataki Z, Meredith LW, Rowe IA, Luo G, Lopez-Ramirez MA, Baumert TF, Weksler B, Couraud PO, Kim KS, Romero IA, Jopling C, Morgello S, Balfe P, McKeating JA. Hepatitis C virus infects the endothelial cells of the blood-brain barrier.Gastroenterology. 2012;142(3):634–643. [CrossRef] [PubMed]

29. Afonso PV, Ozden S, Cumont MC, Seilhean D, Cartier L, Rezaie P, Mason S,Lambert S, Huerre M, Gessain A, Couraud PO, Pique C, Ceccaldi PE, Romero IA. Alteration of blood-brain barrier integrity by retroviral infection. PloS Pathog. 2008;4(11):e1000205. [CrossRef] [PubMed]

30. Chapagain ML, Verma S, Mercier F, Yanagihara R, Nerurkar VR. Polyomavirus JC infects human brain microvascular endothelial cells independent of serotonin receptor 2A. Virology. 2007;364(1):55–63. [CrossRef] [PubMed]

31. Casiraghi C, Dorovini-Zis K, Horwitz MS. Epstein-Barr virus infection of human brain microvessel endothelial cells: a novel role in multiple sclerosis. J Neuroimmunol. 2011;230(1–2): 173–177. [CrossRef] [PubMed]

32. Kakalacheva K, Regenass S, Wiesmayr S, Azzi T, Berger C, Dale RC, Brilot F, Mьnz C, Rostasy K, Nadal D, Lьnemann JD. Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein. Viruses. 2016;8(2). pii: E51. [CrossRef] [PubMed]

33. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol.2016;13(9):517-28. [CrossRef] [PubMed]

34. Fish KN, Soderberg-Naucler C, Mills LK, Stenglein S, Nelson JA. Human cytomegalovirus persistently infects aortic endothelial cells. J Virol. 1998;72(7):5661–5668. [PubMed]

35. Maximova OA, Bernbaum JG, Pletnev AG. West Nile Virus Spreads Transsynaptically within the Pathways of Motor Control: Anatomical and Ultrastructural Mapping of Neuronal Virus Infection in the Primate Central Nervous System. PLoS Negl Trop Dis. 2016 Sep 12;10(9):e0004980. [CrossRef] [PubMed] [PubMed Central]

36. Xu Z, Waeckerlin R, Urbanowski MD, van Marle G, Hobman TC.West Nilevirus infection causes endocytosis of a specific subset of tight junction membrane proteins. PloS One. 2012;7(5):e37886. [CrossRef] [PubMed]

37. Gralinski LE, Ashley SL,DixonSD, Spindler KR.Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol. 2009;83(18):9398–9410. [CrossRef] [PubMed]

38. Fletcher NF, McKeating JA. Hepatitis C virus and the brain. J Viral Hepat. 2012;19(5):301–306. [CrossRef] [PubMed]

39. Goodrum F,Jordan CT, Terhune SS, High K, Shenk T.Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood. 2004;104(3):687–695. [CrossRef] [PubMed]

40. Cheeran MC, Lokensgard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev. 2009;22(1): 99–126. [CrossRef] [PubMed]

41. Speck SH, Ganem D. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe. 2010;8(1):100–115. [CrossRef] [PubMed]

42. Salinas S, Bilsland LG, Henaff D, Weston AE, Keriel A, Schiavo G, Kremer EJ. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PloS Pathog. 2009;5(5):el000442. [CrossRef] [PubMed]

43. Klingen Y, Conzelmann KK, Finke S. Double-labeled rabies virus: live tracking of enveloped virus transport. J Virol. 2008;82(1):237–245. [CrossRef] [PubMed]

44. Ohka S, Sakai M, Bohnert S, Igarashi H, Deinhardt K, Schiavo G, Nomoto A. Receptor-dependent and –independent axonal retrograde transport of poliovirus in motor neurons. J Virol. 2009;83(10):4995–5004. [CrossRef] [PubMed]

45. Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci. 2011;46(1):9–20. [CrossRef] [PubMed]

46. Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, Bucci C, Schiavo G. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 2006;52(2):293–305. [CrossRef] [PubMed]

47. Langevin C, Jaaro H, Bressanelli S, Fainzilber M, Tuffereau C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem. 2002;277(40): 37655–37662. [CrossRef] [PubMed]

48. Roussarie JP, Ruffiй C, Edgar JM,GriffithsI, Brahic M.Axon myelin transfer of a non-enveloped virus. PloS One. 2007;2(12):el331. [CrossRef] [PubMed]

49. Jayakar HR, Jeetendra E, Whitt MA. Rhabdovirus assembly and budding. Virus Res. 2004;106(2): 117–132. [CrossRef] [PubMed]

50. Beier KT, Saunders A, Oldenburg IA, Miyamichi K, Akhtar N, Luo L, Whelan SP, Sabatini B, Cepko CL.Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc Natl Acad Sci U S A. 2011;108(37):15414–15419. [CrossRef] [PubMed]

51. Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153–176. [CrossRef] [PubMed]

52. Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW. Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol. 2007;81(20):11363–11371. [CrossRef] [PubMed]

53. Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PloS Pathog. 2011;7(10):el002282. [CrossRef] [PubMed]

54. Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc. Natl. Acad. Sci. USA. 2005;102 (21), 7571–7576. [CrossRef] [PubMed]

55. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005;121(4): 645–657. [CrossRef] [PubMed]

56. BloomDC,GiordaniNV, Kwiatkowski DL. Epigenetic regulation of latent HSV-1 gene expression. Biochim. Biophys. Acta 2010, 1799(3-4): 246–256. [CrossRef] [PubMed]

57. Perng GC, Jones C. Towards an understanding of the herpes simplex virus type 1 latency reactivation cycle. Interdiscip. Perspect. Infect. Dis. 2010;262415: 1–18. [CrossRef] [PubMed]

58. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 2006;80: 5499–5508. [CrossRef] [PubMed]

59. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Kristie TM. Snapshots: Chromatin control of viral infection. Virology 2013;435: 141–156. [CrossRef] [PubMed]

60. Cohen JI. VZV: molecular basis of persistence (latency and reactivation).In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R,Yamanishi K, editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis.Cambridge:CambridgeUniversityPress;2007. Chapter 38. [PubMed]

61. Sawtell NM, Thompson RL. Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol. 1992;66(4):2150–2156. [PubMed]

62. Chaumorcel M, Souquиre S, Pierron G, Codogno P, Esclatine A. Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy. 2008;4(1):46–53. [PubMed]

63. Orvedahl A, Alexander D, Tallуczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1(1):23–35. [CrossRef] [PubMed]

64. Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW.Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun. 2010;1:146. [CrossRef] [PubMed]

65. Taylor MP, Kobiler O, Enquist LW. Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc Natl Acad Sci U S A. 2012;109(42):17046–17051. [CrossRef] [PubMed]

66. StLeger AJ, Hendricks RL. CD8+ T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J Neurovirol. 2011;17(6):528–534. [CrossRef] [PubMed]

67. Kim SB, Choi JY, Uyangaa E, Patil AM, Hossain FM, Hur J, Park SY, Lee JH, Kim K, Eo SK. Blockage of indoleamine 2,3-dioxygenase regulates Japanese encephalitis via enhancement of type I/II IFN innate and adaptive T-cell responses. J Neuroinflammation. 2016;13(1):79. [CrossRef] [PubMed]

68. Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S, Perez-Shibayama C, Rьlicke T, Bechmann I, Ludewig B. Central Nervous System Stromal Cells Control Local CD8(+) T Cell Responses duringVirus-Induced Neuroinflammation. Immunity. 2016;44(3):622-33. [CrossRef] [PubMed]

69. Mikloska Z, Cunningham AL. Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J Virol. 2001;75(23):11821– 11826. [CrossRef] [PubMed]

70. Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci. 2012;13(5):308–324. [CrossRef] [PubMed]

71. LancasterKZ, Pfeiffer JK. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PloS Pathog. 2010;6(3):el000791. [CrossRef] [PubMed]

72. Koyuncu OO, Perlman DH, Enquist LW. Efficient Retrograde Transport of Pseudorabies Virus within Neurons Reguires Local Protein Synthesis in Axons. Cell Host Microbe. 2013;13(1):54– 66. [CrossRef] [PubMed]

73. Duale H, Hou S, Derbenev AV, Smith BN, Rabchevsky AG.Spinal cord injury reduces the efficacy of pseudorabies virus labeling of sympathetic preganglionic neurons. J Neuropathol Exp Neurol. 2009;68(2):168–178. [CrossRef] [PubMed]

74. Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, Wilson AC, Mohr I, Chao MV.Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe. 2010;8(4):320–330. [CrossRef] [PubMed]

75. Wilcox CL, Smith RL, Freed CR, Johnson EM Jr. Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci. 1990 Apr;10(4):1268-75. [PubMed]

76. Kobayashi M, Wilson AC, Chao MV, Mohr I.Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev. 2012;26(14):1527–1532. [CrossRef] [PubMed]

77. van den Pol AN, Ding S, Robek MD. Long-distance interferon signaling within the brain blocks virus spread. J Virol. 2014;88(7):3695-704. [CrossRef] [PubMed]

78. Abdelmagid N, Bereczky-Veress B, Atanur S, Musilovб A, Zнdek V, Saba L, Warnecke A, Khademi M, Studahl M, Aurelius E, Hjalmarsson A, Garcia-Diaz A, Denis CV, Bergstrцm T, Skцldenberg B, Kockum I, Aitman T, Hьbner N, Olsson T, Pravenec M, Diez M. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS One. 2016 May 25;11(5):e0155832. [CrossRef] [PubMed] [PubMed Central]

79. Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus. Front Microbiol. 2016;7:751. [CrossRef] [PubMed]

80. Willenbring RC, Jin F, Hinton DJ, Hansen M, Choi DS, Pavelko KD, Johnson AJ. Modulatory effects of perforin gene dosage on pathogen-associated blood-brain barrier (BBB) disruption. J Neuroinflammation. 2016;13(1):222. [CrossRef] [PubMed]

81. Liou AT, Wu SY, Liao CC, Chang YS, Chang CS, Shih C. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep. 2016;6:31151. [CrossRef] [PubMed] [PubMed Central]

82. Romero JR, Newland JG Viral meningitis and encephalitis: traditional and emerging viral agents. Semin Pediatr Infect Dis. 2003;14(2):72–82. [CrossRef] [PubMed]

83. Swanson PA, McGavern DB. Viral Diseases of the Central Nervous System. Curr Opin Virol. 2015;11: 44–54. [CrossRef] [PubMed]

84. Power C,AntonyJM, Ellestad KK, Deslauriers A, Bhat R, Noorbakhsh F. The human microbiome in multiple sclerosis: pathogenic or protective constituents? Can J Neurol Sci. 2010 Sep;37 Suppl 2:S24-33. Review. [CrossRef] [PubMed]

85. Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PloS Pathog. 2012;8(5):e1002715. [CrossRef] [PubMed]

86. Delbue S, Comar M, Ferrante P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect Agent Cancer. 2017;12:10. [CrossRef] [PubMed]

87. Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G. An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement (Amst). 2016;4:1-5. [CrossRef] [PubMed]

88. Lin CT, Leibovitch EC, Almira-Suarez MI, Jacobson S. Human herpesvirus multiplex ddPCR detection in brain tissue from low- and high-grade astrocytoma cases and controls. Infect Agent Cancer. 2016;11:32. [CrossRef] [PubMed]

89. Shao Q, Lin Z, Wu X, Tang J, Lu S, Feng D, Cheng C, Qing L, Yao K, Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget. 2016 Jul 26;7(30):48070-48080. [CrossRef] [PubMed] [PubMed Central]


GOST Style Citations






DOI: https://doi.org/10.25305/unj.112091

Copyright (c) 2017 Vitaliy I. Tsymbaliuk, Iryna H. Vasileva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.