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Peripheral nerve injury (PNI) is a fairly common pathology—PNI accounts for 
1-5% of all peacetime injuries and 12% of all combat injuries. This injury leads 
to disability, the development of chronic pain syndromes and a significant 
deterioration in the quality of life of the victims. Unfortunately, at present, 
in the case of the most frequent type of combat trauma — damage to the 
limbs — PNI treatment is mostly done last, "on the residual principle." Modern 
means of surgical and conservative treatment of PNI do not provide complete 
restoration of lost functions, therefore, restorative treatment of PNI is an 
urgent biomedical problem. The article reviews the currently known molecular 
mechanisms of various stages of PNI, as well as the plasticity of the central 
parts of the nervous system on the background of this injury. The main reasons 
for the limitation of autogenous recovery of functions after a sustained PNI are 
described — the absence of a relevant spatial organization of regrowth of axons 
in the area of PNI; post-traumatic death of neurons of spinal nodes and central 
parts of the nervous system; failure of plastic reconstruction of brain and 
spinal cord neural networks; irreversibility of atrophy of denervated muscles. 
Based on this, it was established that the means of restorative treatment of 
PNI should touch not only the epicenter of PNI, but also the central parts of 
the nervous system and denervated muscles. Mesenchymal stem cells (MSCs) 
are well-known means of a positive influence on the the restorative process 
in the focus of PNI, as well as a source of supportive influence/ strengthening 
effect and an amplifier of the plasticity of brain neural networks, which makes 
these cells a promising element of bioengineering treatment of PNI. The effect 
of MSCs on the central parts of the nervous system in case of PNI remains 
the least studied. Data from the literature indicate that such an effect can 
provide support for secondarily affected neurons and stimulate the plastic 
reorganization of brain networks, i.e., in general, significantly improve the 
results of restorative treatment of PNI.
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Epidemiology of peripheral nerve injury
Peripheral nerve injury (PNI) remains a common 

pathology, being one of the important causes of 
long-term or lifelong disability and impaired quality 
of life in many victims. This type of injury accounts 
for 1–5% of all peacetime injuries [1‒3, 4, 6], and 
the annual incidence rate is 13‒23 cases per 100,000  
population [7, 13].

Due to the characteristic symptomatology of 
motor function deficits, as well as the high likelihood 
of developing chronic pain syndrome, PNI is associated 
with substantial financial costs [3, 5, 8, 14], which are 
increasing annually [8, 10]. This is influenced, among 
other factors, by the age and gender of the affected 
patients. Thus, patients with PNI in the USA are people 
aged about 38 years [10, 13], the male to female ratio 
among affected individuals is 3:1 [10, 13].

Upper extremity nerve involvement accounts for 
81–90% of all cases of PNI [10, 14, 15]. The most 
common are lesions of the distal nerves of the upper 
extremities [13‒15]. Only 10‒19% of cases of peripheral 
nervous system injuries are on the nerves of the lower 
extremity[15‒17].

In the early 2000s, at least 2.5–3.0 thousand cases 
of PNI were diagnosed annually in Ukraine, the average 
age of patients was 18–44 years. 60–75% of victims 
were diagnosed with disability [18]. According to our 
calculations, taking into account global epidemiological 
data, domestic epidemiological and demographic 
indicators, the cumulative number of disabled patients 
after undergoing PNI in the pre-war period in Ukraine 
should be about 270 thousand people [19].

In the structure of combat trauma, PNI accounts 
for about 12% of cases [20], and a number of factors 
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(traumatic disease, purulent-septic complications, 
lack of a differential approach to providing medical 
care) significantly worsen treatment outcomes of such 
patients [21, 22].

Challenges of modern means of surgical 
treatment of peripheral nerve injury
Despi te advances in the deve lopment of 

effective surgical means for the treatment of PNI  
[12, 13, 20, 24‒28], the outcomes (for various reasons) 
are far from satisfactory [19, 20, 23]. Hence, improving 
existing or creating new means is an urgent task.

Traditionally, nerve suturing (neurorrhaphy) has 
been the primary technical means of restoring peripheral 
nerve integrity [12, 20], in case of a significant defect 
— its plasty [29] or neurotization [30]. The greatest 
disadvantages are the considerable duration of such 
interventions, their dependence on additional equipment 
and surgeon's experience, additional trauma to the nerve 
during neurorrhaphy, negative effect of suture material 
on the regenerative process, significant probability of 
local inflammatory complications and suture failure, 
insufficient sealing of the nerve ends, which leads to 
aberrant nerve fiber growth with neuroma formation 
[23‒25, 31]. Consequently, non-suture methods for 
connecting the ends of the transected nerve (chemical, 
photochemical, laser welding, electrowelding, etc.) are 
being actively developed [23, 31, 33‒39], as well as 
microstructured and nanostructured bioengineering 
connectors containing cells, that will promote rapid 
sprouting of the injured site with vascular and nerve 
components [24, 40‒42].

Pathophysiology of peripheral nerve injury
It is evident that further improvement of restorative 

treatment of PNI is impossible without considering the 
intimate mechanisms of the pathophysiology of this 
type of injury.

Reactions which are initiated by PNI affect not only 
the foci of trauma, but also remote ones associated with 
the damaged nerve — sensory and autonomic nodes, 
gray matter of the spinal cord, stem, subcortical, and 
cortical parts of the brain, as well as denervated muscles 
and other organs [45‒49].

The main processes occurring in the focus of injury 
are the destruction of the distal part and the proximal 
part of the transected nerve, known as Wallerian 
degeneration [19, 43, 44]. Already within the first 
30 minutes after transection, the largest segment of 
degeneration of the proximal part of the nerve is formed, 
within 8–24 hours — degenerative changes of the distal 
part occur [19, 43], and the whole process lasts about 
1–2 weeks [19, 43].

Wallerian degeneration is initiated by a rapid 
increase in calcium ions concentration near the axonal 
membrane rupture, in particular due to the opening 
of axolemma cation channels [45] and the release of 
calcium ions from endoplasmic depots [45‒49]. The wave 
of increased calcium ions concentration spreads to the 
cell body, causing histone deacetylase 5 (HDAC5) to be 
exported from the nucleus, which, by acetylating histone 

H3 molecules, enables the transcription of certain genes 
[46‒48] (Fig. 1).

The second, slower signal wave (Fig. 2) depends 
on the reverse transport of importin-β1 and vimentin 
proteins synthesized in axoplasm near the injury, which 
together with importin-α, NLS-bearing transcription 
factors (NLS — nuclear localization sequence) and 
phosphorylated protein kinase ERK1/ 2 (extracellular 
signal-regulated kinase 1/2) form a retrograde signaling 
complex associated with dynein [45]. After entering 
the soma, the components of this complex activate the 
transcription factor Elk-1 (ETS (E26 transformation-
specific/erythroblast transformation specific) like-1) 
and also affect gene expression [45]. Another complex 
formed after axonotomy contains STAT3 (signal 
transducer and activator of transcription 3) transcription 
factor, importin-α, DLK (dual leucine zipper kinase) 
protein kinases, JNK (c-Jun N-terminal kinase) and JIP3 
(JNK -interacting protein) factor and is transported 
in a dynein-dependent manner into the neuron body, 
where it activates the subunit of the transcription factor 
AP-1 (activator protein 1) c-Jun and ATF3 (activating 
transcription factor 3) [45‒49].

The above transcription factors initiate the neuron's 
transcriptional response to damage [45‒50]. In some 
cases, the described chain of reactions against the 
background of axonotomy-triggered calpain-dependent 
and ubiquitin-dependent axoskeleton degeneration 
[19,43] can be transformed into apoptotic cell  
death [19, 48].

At the same time, during the first minutes after 
axonotomy, the receptor tyrosine kinase ErbB2 
(erythroblastosis oncogene B receptor tyrosine  
kinase 2) of neurolemocytes activated by neuroligins 
of the axolemma initiates the MAPK cascade (mitogen-
activated protein kinase), and by the end of the 2nd day, 
myelin formation stops [19, 43].

Due to LIF (leukemia inhibitory factor) and MCP-1 
(monocyte chemoattractant protein 1) factors, which 
are expressed by activated neuroleumocytes, as well 
as due to antibodies to myelin, complement factor C5, 
and type VI collagen, macrophages are involved at the 
site of injury [19, 43, 51‒53], not only resident, but 
also peripheral from the 4th day [19, 43, 51, 52]. In 
general, macrophages of the M1 fraction are involved 
in the degeneration of the peripheral part of the injured 
nerve and development of the local inflammatory 
process, whereas macrophages of the M2 fraction have 
anti-inflammatory properties and participate in the 
process of axon regeneration [19, 52], in particular in 
the attraction and promitotic stimulation of Schwann cell 
precursors [53]. Another important role of macrophages 
on the background of PNI is local stimulation of 
angiogenesis [53].

The above transcription factors also activate the 
neuron regenerative program [45, 48, 54]. Regenerative 
axon growth depends on numerous extracellular factors, 
in particular, on the surface proteins of Schwann cells, 
pericytes, endotheliocytes, and fibroblasts, as well as on 
the proteins of the newly formed intercellular substance 
[19, 48, 55, 59, 60].
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Fig. 1. The first wave of cerebripetal signaling after axonotomy: increase in calcium ion concentration near 
axonal membrane rupture, activation of PKCµ (protein kinase Cµ), which enables nuclear export of histone 
deacetylase (HDAC5), leading to histone H3 acetylation and expression of numerous regulators of the cell's 
response to axonotomy

Fig. 2. The second wave of cerebripetal protein signaling after axonotomy (explanation in the text)

Loss of spatial contact with degenerating axons is an 
important promitotic factor for neuroleumocytes, which 
is implemented by many intracellular and extracellular 
factors [56, 57], in particular, a neuregulin-1-dependent 
cascade [51, 56‒58]. Due to the existence of endoneurial 
remnants, immature neurolemocytes form the so-called 
Büngner bands, that direct the axons growth by a number 
of adhesion factors, for example, laminin and ninjurin-1 
[19, 43, 48, 54]. The expression of other axon growth 
regulators by activated neurolymocytes, macrophages, 
and fibroblasts of the distal part of the injured nerve has 
also been described [43, 48, 54, 55].

Neuroplasticity and apoptosis in the central 
parts of the nervous system against the 
background of peripheral nerve injury
The state of premotor neurons of the cerebral 

cortex and motoneurons of the spinal cord is crucial 
for the success of the recovery process following motor 
nerve injury [61‒64]. PNI is thought to predispose 
selective remodeling of cortical synapses, associated 
with ascending degeneration of processes of sensory 
and motor neurons and their sporadic death [65‒70]. 
As a consequence, cortical areas deprived of normal 
afferentation are covered by network effects of 
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neural networks of neighboring areas [70]. A possible 
mechanism of such remodeling is the collateral growth 
and formation of synapses by the processes of neurons 
of neighboring cortical areas, revealing of the so-called 
hidden interneuron connections within the area deprived 
of usual afferentation [63, 69, 71].

As a result of axonotomy, the volume of the neuron 
body increases, the nucleus moves to the periphery 
against the background of chromatolysis [65, 66], 
which is associated with the active synthesis of proteins 
involved in the remodeling of neuron connections and 
axonogenesis [72, 73]. Rapid initiation of the neuroplastic 
process after PNI in an adult is observed in the spinal 
cord, rostroventral part of the medulla oblongata, locus 
coeruleus, nuclei of the dorsal columns and suture, 
periaqueductal gray matter, thalamus, and sensorimotor 
cortex [67, 69, 70, 74].

In some cases, axonotomy triggers apoptosis of 
spinal cord motoneurons by increasing the expression 
of APAF-1 (apoptotic protease activating factor 1), Bax 
(B-cell lymphoma 2 associated X protein), caspase-3, 
and caspase-9 [75‒77]. Under the same conditions, 
necrotic changes are observed in the gray matter of 
the spinal cord against the background of increased 
tissue glutamate concentration and decreased cAMP 
content [77]. The consequences of widespread death of 
spinal cord neurons are reactive gliosis [62, 77‒80] and 
reorganization of the neural circuit of the motor system.

In general, remodelling of brain neural networks 
on the background of PNI is the most probable 
mechanism for changing their functional topology [79, 
81‒83]. Consequently, the success of the regenerative 
process at PNI largely depends on the quality of this  
plastic process.

Limitations of regeneration in peripheral 
nerve injury and ways of their elimination
Despite the high autoregenerative potential of the 

peripheral nervous system, PNI is a frequent cause of 
deep paresis, neuropathic pain syndromes, and disability 
[13, 26, 31, 64]. It can be argued that despite the use 
of modern methods of diagnosis and treatment, the 
recovery of lost functions of the injured nerve is limited 
in most cases [19,23,65‒70]. This is due to at least 4 
reasons:

1) difficulty and lack of proper spatial organization 
of axon growth in the PNI area [37, 38];

2) postaxonotomy and secondary death of neurons 
of spinal nodes, spinal cord and brain [65‒71, 78];

3) limitation of plastic reconstruction of brain neural 
networks and spinal cord after PNI [69, 74, 84];

4) irreversible atrophy of denervated muscles  
[20, 79, 85, 86].

Consequently, three types of interventions can 
improve the results of the recovery process on the 
background of PNI:

1) improving conditions for axonal sprouting in the 
PNI area [24, 40‒42, 86‒89];

2) preventing postaxonotomy and secondary 
neuronal death and stimulating the neural networks 
plasticity [90‒93];

3) preventing the death of muscle fibers and 
maintaining their plasticity [85, 86].

The development of means of the first type is 
associated with the improvement of technologies 
f o r  c onnec t ing  par t s  o f  t he  in ju r ed  ne r ve  
[23, 31, 33‒36, 37‒39] and the creation of tunneled 
bioengineered implants, often in combination with 
various types of undifferentiated cells and growth factors  
[24, 40‒42, 86‒89, 94].

Means of the second type should provide a ubiquitory 
effect on brain neural networks and spinal cord, for 
example, by factors producing stem cells [90‒92] or 
against the background of physical neurorehabilitation 
programs [93], etc.

Intramuscular transplantation of stem cells or their 
progeny [87], physical neurorehabilitation effects [95], 
etc. should be considered as means of the third type.

Mesenchymal stem cells in the treatment of 
peripheral nerve injury
Mesenchymal stem cells (MSCs) are a type of stromal 

cells with the potential to give rise not only to similar 
cells, but also to progenitors capable of differentiating 
into fibroblasts, osteocytes, chondrocytes, adipocytes, 
etc. [90‒92]. The most common sources of MSCs are 
adipose tissue, bone marrow, placental tissue, umbilical 
cord, umbilical cord blood, and dental pulp [92, 96].

The multifaceted beneficial effect of MSCs is 
attributed to pathotropic homing [97], the phenomenon of 
neurogenic transdifferentiation [90, 97‒99], particularly 
in neurolemocytes [100‒102], the ability to fuse with 
recipient cells [103], microvesicular [104‒108], factor 
[97, 100‒102] or contact [97, 105] influence. In addition, 
transplanted MSCs exert immunosuppressive and 
probably local anti-inflammatory effect [109‒112].

In PNI, MSCs or their derivatives are most often used 
in combination with bioengineering matrices [24, 40‒42, 
88‒89, 94]. For example, implantation of a silicone tube 
filled with a suspension of MSCs into the area of a rat 
sciatic nerve defect improves the functional-anatomical 
and morphological indicators of motor function recovery 
of the paretic limb [94, 113, 114]. Mesenchymal stem 
cells derived from visceral adipose tissue and associated 
with fibrin matrix improve the regeneration of an injured 
nerve and the motor function recovery [89], promoting, 
among other things, to the survival of sensory neurons 
in spinal cord nodes [88, 89]. Such effects of MSCs 
are associated with differentiation of these cells into 
neuroleumocytes and their production of growth factors, 
in particular BDNF (brain derived neurotrophic factor), 
CNTF (ciliary neurotrophic factor) and FGF-2 (fibroblast 
growth factor 2) [100‒102].

Mesenchymal stem cells are one of the traditional 
objects in the development of therapeutic agents 
affecting the structures of the CNS, for example, 
in chronic inflammatory and degenerative diseases  
[115, 116]. In Alzheimer's disease and ischemic stroke, 
transplantation of MSCs or medium conditioned by 
these cells is accompanied by antiapoptotic effect, 
modulates the inflammatory process, stimulates 
axons growth and neurogenesis [117‒120], generally 
improving the neurological status of patients. In addition, 
intrathecal administration of MSCs or conditioned 
medium improves motor function recovery against the 
background of experimental spinal cord injury, most 
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likely due to potentiation of the neuroplastic process 
[108, 121]. Taking into account the above, intrathecal 
transplantation of MSCs on the background of PNI can 
be regarded as one of the means of supporting and 

Fig. 3. Possible areas of using MSCs properties to enhance the 
regenerative process on the background of PNI: 1 – epicenter of 
peripheral nerve injury (PNI); 2 – denervated muscle; 3 – brain;  
4 - spinal cord

proneuroplastic influence on brain neural networks, 
representing a promising means of restorative treatment 
of PNI consequences (Fig. 3).
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Conclusions
Peripheral nerve injury is one of the leading causes of 

disability and associated economic costs. The reason for 
this situation is incomplete restoration of injured nerve 
function due to incomplete axon growth at the injury site, 
neuronal death in the central and peripheral parts of the 
nervous system, and atrophy of denervated muscles. 
Improving the results of PNI restorative treatment 
depends significantly not only on the improvement of 
means of influencing the regenerative process in the 
epicenter of the injury, but also on the development 
of means of positive influence on neural networks of 
the brain and denervated muscles. Since MSCs are the 
most accessible and most widely tested bioengineering 
tool for influencing neural networks [100‒102, 115, 116, 
121], their intrathecal transplantation on the background 
of PNI can have a substantial positive impact. Further 
research is needed to explore this potential.
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