Monogenic signs of susceptibility to ischemic stroke: literature review

Authors

DOI:

https://doi.org/10.25305/unj.61880

Keywords:

ischemic stroke, genetic factors of susceptibility

Abstract

Genetic factors are the important chain in the complex conditions determining the development of ischemic stroke. Mutations have different significance for the risk of its development. Monogenic syndromes define clearly determined type of stroke. These syndromes include: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL, mutation in the NOTCH3 gene); cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL, mutation in the HTRA1 gene); Fabry disease (FD, GLA D313Y mutation); COL4A1-related brain small vessel disease associated with mutation in the gene encoding IVα1 collagen; Ehlers Danlos syndrome (EDS) caused by mutation in the COL3A1 gene; hereditary endotheliopathy with retinopathy, nephropathy and stroke (HERNS, mutation in the TREX1 gene); sickle cell disease (SCD, mutation in the beta-globin gene); homocystinuria - hereditary metabolic disorder associated with mutations in the MTHFR, MTRR, MTR CBS genes of the folate cycle; neurofibromatosis type 1 (NF1, mutation in the gene NF1); hereditary hemorrhagic telangiectasia (HHT, mutations in the ENG, ALK1 or SMAD4 genes); hereditary cerebral amyloid angiopathy (CAA, mutation in the APP gene); cerebral cavernous malformations (CCM, mutations in the CCM1, CCM2 or CCM3 genes); mithochondrial encephalopathy lactic acidosis and strokelike episodes (MELAS, mutations in the MT-ND1, MT-ND5, MT-TH, MT-TL1, MT-TV genes).The study of the genetic profile permits to personify medical tactics in ischemic stroke.

Author Biographies

Vitaliy Tsymbaliuk, Romodanov Neurosurgery Institute, Kiev

Restorative Neurosurgery Department

Iryna Vasileva, Romodanov Neurosurgery Institute, Kiev

Neurobiochemistry Department

References

1. Sourander P, Walinder J. Hereditary multi-infarct dementia. Morphological and clinical studies of a new disease. Acta Neuropathol. 1977;39(3):247-54. [CrossRef] [PubMed]

2. Chabriat H, Levy C, Taillia H, Iba-Zizen MT, Vahedi K, Joutel A, Tournier-Lasserve E, Bousser M. Patterns of MRI lesions in CADASIL. Neurology. 1998;51(2):452-7. [CrossRef] [PubMed]

3. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nature Genetics. 1993;3(3):256-9. [CrossRef] [PubMed]

4. Dichgans M, Ludwig H, Mьller-Hцcker J, Messerschmidt A, Gasser T. Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3v EGF-like repeat domains. Eur J Hum Genet. 2000;8(4):280-5. [CrossRef] [PubMed]

5. Quattrone A, Mazzei R, Scheid R, Heinritz W. Cysteine-sparing notch3 mutations: cadasil or cadasil variants?. Neurology. 2009;72(24):2135-6. [CrossRef] [PubMed]

6. Malandrini A, Gaudiano C, Gambelli S, Berti G, Serni G, Bianchi S, Federico A, Dotti MT. Diagnostic value of ultrastructural skin biopsy studies in CADASIL. Neurology. 2007;68(17):1430-2. [CrossRef] [PubMed]

7. Yanagawa S, Ito N, Arima K, Ikeda S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology. 2002;58(5):817-20. [CrossRef] [PubMed]

8. Oide T, Nakayama H, Yanagawa S, Ito N, Ikeda S, Arima K. Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology. 2008;28(2):132-42. [CrossRef] [PubMed]

9. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. New Engl J Med. 2009;360(17):1729-39. [CrossRef] [PubMed]

10. Lan TH, Huang XQ, Tan HM. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol. 2013;22(5):401-7. [CrossRef] [PubMed]

11. Mehta A, Beck M, Eyskens F, Feliciani C, Kantola I, Ramaswami U, Rolfs A, Rivera A, Waldek S, Germain DP. Fabry disease: a review of current management strategies. QJM. 2010;103(9):641-59. [CrossRef] [PubMed]

12. Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke. 2009;40(3):788-94. [CrossRef] [PubMed]

13. Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, Fan JQ. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J. 2007;406(2):285-95. [CrossRef] [PubMed]

14. Yasuda M, Shabbeer J, Benson S, Maire I, Burnett R, Desnick R. Fabry disease: characterization of a-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Human Mutation. 2003;22(6):486-92. [CrossRef] [PubMed]

15. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, van Roomen C, Mirzaian M, Wijburg FA, Linthorst GE, Vedder AC, Rombach SM, Cox-Brinkman J, Somerharju P, Boot RG, Hollak CE, Brady RO, Poorthuis BJ. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA. 2008;105(8):2812-7. [CrossRef] [PubMed]

16. Lenders M, Duning T, Schelleckes M, Schmitz B, Stander S, Rolfs A, Brand SM, Brand E. Multifocal white matter lesions associated with the D313Y mutation of the α-galactosidase A gene. PLoS ONE. 2013;8(2):e55565. [CrossRef] [PubMed]

17. Moore DF, Altarescu G, Ling GS, Jeffries N, Frei KP, Weibel T, Charria-Ortiz G, Ferri R, Arai AE, Brady RO, Schiffmann R. Elevated cerebral blood flow velocities in fabry disease with reversal after enzyme replacement. Stroke. 2002;33(2):525-31. [CrossRef] [PubMed]

18. Emanuel BS, Sellinger BT, Gudas LJ, Myers JC. Localization of the human procollagen alpha 1(IV) gene to chromosome 13q34 by in situ hybridization. Am J Hum Genet. 1986 Jan;38(1):38-44. [PubMed]

19. Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, Calvas P, Orignac I, Dousset V, Lacombe D, Orgogozo JM, Arveiler B, Goizet C. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62(2):177-84. [CrossRef] [PubMed]

20. Trьeb B, Grцbli B, Spiess M, Odermatt BF, Winterhalter KH. Basement membrane (type IV) collagen is a heteropolymer. J Biol Chem. 1982 May 10;257(9):5239-45. [PubMed]

21. Engel J, Prockop D. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Ann Rev Biophys Biophys Chem. 1991;20(1):137-52. [CrossRef] [PubMed]

22. Germain D, Herrera-Guzman Y. Vascular Ehlers–Danlos syndrome. Ann Genet. 2004;47(1):1-9. [CrossRef] [PubMed]

23. Schievink WI. Cerebrovascular involvement in Ehlers-Danlos syndrome. Curr Treat Options Cardiovasc Med. 2004;6(3):231-6. [CrossRef] [PubMed]

24. Germain DP. The vascular Ehlers-Danlos syndrome. Curr Treat Options Cardiovasc Med. 2006;8(2):121-7. [CrossRef] [PubMed]

25. North KN, Whiteman DA, Pepin MG, Byers PH. Cerebrovascular complications in Ehlers-Danlos syndrome type IV. Ann Neurol. 1995;38(6):960-4. [CrossRef] [PubMed]

26. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, Liszewski MK, Barilla-Labarca ML, Terwindt GM, Kasai Y, McLellan M, Grand MG, Vanmolkot KR, de Vries B, Wan J, Kane MJ, Mamsa H, Schдfer R, Stam AH, Haan J, de Jong PT, Storimans CW, van Schooneveld MJ, Oosterhuis JA, Gschwendter A, Dichgans M, Kotschet KE, Hodgkinson S, Hardy TA, Delatycki MB, Hajj-Ali RA, Kothari PH, Nelson SF, Frants RR, Baloh RW, Ferrari MD, Atkinson JP. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nature Genetics. 2007;39(9):1068-70. [CrossRef] [PubMed]

27. Mazur DJ, Perrino FW. Structure and Expression of the TREX1 and TREX2 3’->5’ Exonuclease Genes. J Biol Chem. 2001;276(18):14718-27. [CrossRef] [PubMed]

28. Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3’right-arrow5’ exonucleases. J Biol Chem. 1999;274(28):19655-660. [CrossRef] [PubMed]

29. Grand MG, Kaine J, Fulling K, Atkinson J, Dowton SB, Farber M, Craver J, Rice K. Cerebroretinal vasculopathy: a new hereditary syndrome. Ophthalmology. 1988;95(5):649-59. [CrossRef] [PubMed]

30. Epstein F, Bunn H. Pathogenesis and treatment of sickle cell disease. New Engl J Med. 1997;337(11):762-9. [CrossRef] [PubMed]

31. Steinberg MH. Management of sickle cell disease. New Engl J Med. 1999;340(13):1021–30. [CrossRef] [PubMed]

32. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR. Pain in sickle cell disease. New Engl J Med. 1991;325(1):11-6. [CrossRef] [PubMed]

33. van der Put NM, Gabreлls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ. A Second Common Mutation in the Methylenetetrahydrofolate Reductase Gene: An Additional Risk Factor for Neural-Tube Defects? Am J Hum Genet. 1998;62(5):1044-51. [CrossRef] [PubMed]

34. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics. 1995;10(1):111-3. [CrossRef] [PubMed]

35. Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost. 1997 Jul;78(1):523-6. [PubMed]

36. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169-72. [CrossRef] [PubMed]

37. Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, Evans A, Whitehead AS. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451-6. [CrossRef] [PubMed]

38. Seetharam B, Yammani R. Cobalamin transport proteins and their cell-surface receptors. Expert Rev Mol Med. 2003;5(18):1-18. [CrossRef] [PubMed]

39. Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378-85. [CrossRef] [PubMed]

40. Ding R, Lin S, Chen D. The association of Cystathionine β Synthase (CBS) T833C polymorphism and the risk of stroke: a meta-analysis. J Neurol Sci. 2012;312(1-2):26-30. [CrossRef] [PubMed]

41. Grand MG, Kaine J, Fulling K, Atkinson J, Dowton SB, Farber M, Craver J, Rice K. Cerebroretinal vasculopathy. Ophthalmology. 1988;95(5):649-59. [CrossRef] [PubMed]

42. Allele Frequency For Polymorphic Site: rs1801133. Locus Name: 5,10-methylenetetrahydrofolate reductase (NADPH) [Internet]. The ALlele FREquency Database; 2014 [cited 2015 February 20]. Available at: http://alfred.med.yale.edu/alfred/SiteTable1A_working.asp?siteuid=SI001032G

43. Rady PL, Szucs S, Grady J, Hudnall SD, Kellner LH, Nitowsky H, Tyring SK, Matalon RK. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) in ethnic populations in Texas; a report of a novelMTHFR polymorphic site, G1793A. Am J Med Genet. 2002;107(2):162-8. [CrossRef] [PubMed]

44. Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000 Feb;130(2S Suppl):377S-81S. [PubMed]

45. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB 1999;13(15):2277-83. [PubMed]

46. Undas A, Brozek J, Jankowski M, Siudak Z, Szczeklik A, Jakubowski H.Plasma Homocysteine Affects Fibrin Clot Permeability and Resistance to Lysis in Human Subjects. Arterioscler Thromb Vasc Biol. 2006;26(6):1397-404. [CrossRef] [PubMed]

47. Undas A, Perla J, Lacinski M, Trzeciak W, Kazmierski R, Jakubowski H. Autoantibodies Against N-Homocysteinylated Proteins in Humans: Implications for Atherosclerosis. Stroke. 2004;35(6):1299-304. [CrossRef] [PubMed]

48. Cook R, Wagner C. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc Natl Acad Sci USA. 1984;81(12):3631-4. [CrossRef] [PubMed]

49. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567-77. [CrossRef] [PubMed]

50. Toole J, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, Sides EG, Wang CH, Stampfer M. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA. 2004;291(5):565-75. [CrossRef] [PubMed]

51. Sermon BA, Lowe PN, Strom M, Eccleston JF. The Importance of two conserved arginine residues for catalysis by the ras GTPase-activating protein, neurofibromin. J Biol Chem. 1998;273(16):9480-5. [CrossRef] [PubMed]

52. Sobata E, Ohkuma H, Suzuki S. Cerebrovascular disorders associated with von Recklinghausen’s neurofibromatosis. Neurosurgery. 1988;22(3):544-9. [CrossRef] [PubMed]

53. Ardelean D, Letarte M. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet. 2015;6(35). [CrossRef] [PubMed]

54. McAllister K, Baldwin M, Thukkani AK, Gallione CJ, Berg JN, Porteous ME, Guttmacher AE, Marchuk DA. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet. 1995;4(10):1983-5. [CrossRef] [PubMed]

55. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189-95. [CrossRef] [PubMed]

56. Benzinou M, Clermont F, Letteboer TG, Kim JH, Espejel S, Harradine KA, Arbelaez J, Luu MT, Roy R, Quigley D, Higgins MN, Zaid M, Aouizerat BE, van Amstel JK, Giraud S, Dupuis-Girod S, Lesca G, Plauchu H, Hughes CC, Westermann CJ, Akhurst RJ. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun. 2012;3:613-6. [CrossRef] [PubMed]

57. Jonker L, Arthur HM. Endoglin expression in early development is associated with vasculogenesis and angiogenesis. Mech Dev. 2002;110(1-2):193-6. [CrossRef] [PubMed]

58. van Laake L, van den Driesche S, Post S Feijen A, Jansen MA, Driessens MH, Mager JJ, Snijder RJ, Westermann CJ, Doevendans PA, van Echteld CJ, ten Dijke P, Arthur HM, Goumans MJ, Lebrin F, Mummery CL. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation. 2006;114(21):2288-97. [CrossRef] [PubMed]

59. Tu J, Stoodley M, Morgan M, Storer K. Ultrastructure of Perinidal Capillaries in Cerebral Arteriovenous Malformations. Neurosurgery. 2006;58(5):961-70. [CrossRef] [PubMed]

60. Mebane-Sims I. Alzheimer’s disease facts and figures. Alzheimers Dement. 2009;5(3):234-70. [CrossRef] [PubMed]

61. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE Science. 1999;286(5440):735-41. [CrossRef] [PubMed]

62. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron. 1994;13(1):45-53. [CrossRef] [PubMed]

63. Kumar-Singh S, Cras P, Wang R Kros JM, van Swieten J, Lьbke U, Ceuterick C, Serneels S, Vennekens K, Timmermans JP, Van Marck E, Martin JJ, van Duijn CM, Van Broeckhoven C. Dense-Core Senile Plaques in the Flemish Variant of Alzheimer’s Disease Are Vasocentric. Am J Pathol. 2002;161(2):507-20. [CrossRef] [PubMed]

64. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF. Cerebral Cavernous Malformations. New Engl J Med. 1988;319(6):343-7. [CrossRef] [PubMed]

65. Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiat. 2001;71(2):188-92. [CrossRef] [PubMed]

66. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6(3):237-44. [CrossRef] [PubMed]

67. D’Angelo R, Marini V, Rinaldi C, Origone P, Dorcaratto A, Avolio M, Goitre L, Forni M, Capra V, Alafaci C, Mareni C, Garre C, Bramanti P, Sidoti A, Retta SF, Amato A. Mutation Analysis of CCM1, CCM2 and CCM3 Genes in a Cohort of Italian Patients with Cerebral Cavernous Malformation. Brain Pathol. 2010;21(2):215-24. [CrossRef] [PubMed]

68. Liquori CL, Berg MG, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet. 2003;73(6):1459-64. [CrossRef] [PubMed]

69. Zawistowski J, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet. 2005;14(17):2521-31. [CrossRef] [PubMed]

70. Brown W, George M, Wilson A. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA. 1979;76(4):1967-71. [CrossRef] [PubMed]

71. Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651-3. [CrossRef] [PubMed]

72. Lertrit P, Noer AS, Jean-Francois MJ, Kapsa R, Dennett X, Thyagarajan D, Lethlean K, Byrnet E, Marzuki S. A new disease-related mutation for mitochondrial encephalopathy lactic acidosis and strokelike episodes (MELAS) syndrome affects the ND4 subunit of the respiratory complex I. Am. J. Hum. Genet. 1992;51(6):457-68. [PubMed]

73. Yuan P, Salvadore G, Li X, Zhang L, Du J, Chen G, Manji HK. Valproate activates the Notch3/c-FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life? Bipolar Disord. 2009;11(3):256-69. [CrossRef] [PubMed]

74. Onodera O. [TGF-β family signaling contributes to human cerebral small vessel disease]. Rinsho Shinkeigaku. 2011;51(11):943-4. Japanese. [CrossRef] [PubMed]

75. Fellgiebel A, Gartenschlдger M, Wildberger K, Scheurich A, Desnick R, Sims K. Enzyme replacement therapy stabilized white matter lesion progression in Fabry disease. Cerebrovasc Dis. 2014;38(6):448-56. [CrossRef] [PubMed]

76. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE, Michel BA, Distler JH, Gay S, Distler O. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthrit Rheum. 2010;62(6):1733-43. [CrossRef] [PubMed]

77. Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, Lanting L, Todorov I, Rossi JJ, Natarajan R. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TFG-b-induced collagen expression in kidney cells. J Biol Chem. 2010;285(44):34004-15. [CrossRef] [PubMed]

78. Parkin J, San Antonio J, Pedchenko V, Hudson B, Jensen S, Savige J. Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat. 2011;32(2):127-43. [CrossRef] [PubMed]

79. Hsia CJ, Ma L. A hemoglobin-based multifunctional therapeutic: polynitroxylated pegylated hemoglobin. Artif Organs. 2011;36(2):215-20. [CrossRef] [PubMed]

80. Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, Walter JH, Howard PM, Naughten ER. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21(12):2080-5. [CrossRef] [PubMed]

81. Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, Stabler SP, Allen RH, Chwatko G, Jakubowski H, Niculescu MD, Mudd SH. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007;91(2):165-75. [CrossRef] [PubMed]

82. Bhardwaj P, Sharma R, Sharma M. Homocystinuria: a rare condition presenting as stroke and megaloblastic anemia. J Pediatr Neurosci. 2010;5(2):129-31. [CrossRef] [PubMed]

83. Cook S, Hess OM. Homocysteine and B vitamins. Handb. Exp. Pharmacol. 2005;170:325-38" target="_blank">[CrossRef] [PubMed]

84. Alurkar A, Prasanna Karanam LS, Oak S. Endovascular treatment of ruptured saccular aneurysm from basilar artery fenestration. J Vasc Interv Neurol. 2014;7(1):5-7. [CrossRef] [PubMed]

85. Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke. 2015;17(1):17-30. [CrossRef] [PubMed]

86. Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2014;131(3):289-99. [CrossRef] [PubMed]

87. Procaccio V, Bris C, Chao de la Barca J, Oca F, Chevrollier A, Amati-Bonneau P, Bonneau D, Reynier P. Perspectives of drug-based neuroprotection targeting mitochondria. Rev Neurol. 2014;170(5):390-400. [CrossRef] [PubMed]

88. Bevan S, Traylor M, Adib-Samii P, Malik R, Paul NL, Jackson C, Farrall M, Rothwell PM, Sudlow C, Dichgans M, Markus HS. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke. 2012;43(12):3161-7. [CrossRef] [PubMed]

89. Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K, Kuhlenbдumer G, Bevan S, Jonsdottir T, Bjarnason H, Saemundsdottir J, Palsson S, Arnar DO, Holm H, Thorgeirsson G, Valdimarsson EM, Sveinbjцrnsdottir S, Gieger C, Berger K, Wichmann HE, Hillert J, Markus H, Gulcher JR, Ringelstein EB, Kong A, Dichgans M, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64(4):402-9. [CrossRef] [PubMed]

90. Williams FM, Carter AM, Hysi PG, Surdulescu G, Hodgkiss D, Soranzo N, Traylor M, Bevan S, Dichgans M, Rothwell PM, Sudlow C, Farrall M, Silander K, Kaunisto M, Wagner P, Saarela O, Kuulasmaa K, Virtamo J, Salomaa V, Amouyel P, Arveiler D, Ferrieres J, Wiklund PG, Ikram MA, Hofman A, Boncoraglio GB, Parati EA, Helgadottir A, Gretarsdottir S, Thorsteinsdottir U, Thorleifsson G, Stefansson K, Seshadri S, DeStefano A, Gschwendtner A, Psaty B, Longstreth W, Mitchell BD, Cheng YC, Clarke R, Ferrario M, Bis JC, Levi C, Attia J, Holliday EG, Scott RJ, Fornage M, Sharma P, Furie KL, Rosand J, Nalls M, Meschia J, Mosely TH, Evans A, Palotie A, Markus HS, Grant PJ, Spector TD; EuroCLOT Investigators; Wellcome Trust Case Control Consortium 2; MOnica Risk, Genetics, Archiving and Monograph; MetaStroke; International Stroke Genetics Consortium. Ischemic stroke is associated with the ABO locus: The EuroCLOT study. Ann Neurol. 2013;73(1):16-31. [CrossRef] [PubMed]

91. Gschwendtner A1, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, Meitinger T, Wichmann E, Mitchell BD, Furie K, Slowik A, Rich SS, Syme PD, MacLeod MJ, Meschia JF, Rosand J, Kittner SJ, Markus HS, Mьller-Myhsok B, Dichgans M; International Stroke Genetics Consortium. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531-9. [CrossRef] [PubMed]

92. International Stroke Genetics Consortium (ISGC); Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, Jackson CA, Traylor M, Strange A, Su Z, Band G, Syme PD, Malik R, Pera J, Norrving B, Lemmens R, Freeman C, Schanz R, James T, Poole D, Murphy L, Segal H, Cortellini L, Cheng YC, Woo D, Nalls MA, Mьller-Myhsok B, Meisinger C, Seedorf U, Ross-Adams H, Boonen S, Wloch-Kopec D, Valant V, Slark J, Furie K, Delavaran H, Langford C, Deloukas P, Edkins S, Hunt S, Gray E, Dronov S, Peltonen L, Gretarsdottir S, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Boncoraglio GB, Parati EA, Attia J, Holliday E, Levi C, Franzosi MG, Goel A, Helgadottir A, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Duncanson A, Jankowski J, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Worrall BB, Kittner SJ, Mitchell BD, Kissela B, Meschia JF, Thijs V, Lindgren A, Macleod MJ, Slowik A, Walters M, Rosand J, Sharma P, Farrall M, Sudlow CL, Rothwell PM, Dichgans M, Donnelly P, Markus HS.Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328-33. [CrossRef] [PubMed]

Published

2016-03-17

How to Cite

Tsymbaliuk, V., & Vasileva, I. (2016). Monogenic signs of susceptibility to ischemic stroke: literature review. Ukrainian Neurosurgical Journal, (1), 14–24. https://doi.org/10.25305/unj.61880

Issue

Section

Review articles