Positron emission tomography in neurooncology: clinical applications and promising strategies

Authors

  • Andrei Vlassenko Washington University, St. Louis, Missouri, United States
  • Sergiy Makeyev Romodanov Neurosurgery Institute, Kiev, Ukraine
  • Mark Mintun Washington University, St. Louis, Missouri, United States

Keywords:

positron emission tomography, neurooncology, brain tumor diagnosis

Abstract

The role of functional neuroimaging techniques in the understanding the pathophysiological mechanisms of brain tumors and in assessment of neuro-oncological patients is increasingly important. Positron emission tomography (PET) allows non-invasive measuring without disturbing the local biological process in the brain tumor and surrounding tissue. In this review, we highlight PET approaches to imaging some important aspects of tumor biology including energetic metabolism, cell proliferation, amino acids metabolism, tissue hypoxia, receptors and gene expression. We also discuss the role of PET in clinical neuro-oncology and neurosurgery and most promising strategies and developments of PET applied to brain tumor diagnosis and treatment.

References

Alauddin M.M., Conti P.S., Mazza S.M. et al. 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)-methyl]guanine ([18F]-FHPG): A potential imaging agent of viral infection and gene therapy using PET // Nucl Med Biol. — 1996. — V. 23. — P. 787—792.

Alavi J.B., Alavi A., Chawluk J. et al. Positron emission tomography in patients with glioma — a predictor of prognosis // Cancer. — 1988. — V. 62. — P.1074—1078.

Bergstrom M., Ku L., Fasth K.J. et al. In vitro and animal validation of bromine-76-bromodeoxyuridine as a proliferation marker // J Nucl Med. — 1998. — V. 39. — P. 1273—1279.

Beyer T., Townsend D.W., Brun T. et al. A combined PET/CT scanner for clinical oncology // J Nucl Med. — 2000. — V. 41. — P. 1369—1379.

Bittar R.G., Olivier A., Sadikot A.F., Andermann F. et al. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography // J Neurosurg. — 1999. — V. 91. — P. 915—921.

Blasberg R.G., Roelcke U., Weinreich R. et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine // Cancer Res. — 2000. — V. 60. — P. 624—635.

Brunetti A., Alfano B., Soricelli A. et al. Functional characterization of brain tumors: an overview of the potential clinical value // Nucl Med Biol. — 1996. — V. 6. — P. 699—715.

Cleaver J.E. Thymidine metabolism and cell kinetics // Front Biol. — 1967. — V. 6. — P. 43—100.

Conti P.S., Allaudin F.M., Fissekis J.R., Watanabe K.A. Synthesis of [18F]—2Т-fluoro—5-methyl—1-beta-D-arabinofuranosyluracil ([18F] FMAU) // J Nucl Med. — 1999. — V. 40. — 83P.

Davis W.K., Boyko O.B., Hoffman J.M. et al. [11F]2-fluoro—2-deoxyglucose-positron emission tomography correlation of gadolinium-enhanced MR imaging of central nervous system neoplasia // AJNR. — 1993. — V. 14. — P. 515—523.

Dehdashti F., Mintun M.A., Lewis J.S. et al. Evaluation of tumor hypoxia with Cu—60 ATSM and PET // J Nucl Med. — 2000. — V. 41. — S. 5. — 34P.

De Reuck J., Santens P., Goethals P. et al. [Methyl—11C]thymidine positron emission tomography in tumoral and non-tumoral cerebral lesions // Acta Neurol Belg. — 1999. — V. 99. P. 118—125.

Derlon J.M., Chapon F., Noel M.H. et al. Non-invasive grading of oligodendrogliomas: correlations between in vivo metabolic pattern and histopathology // Eur J Nucl Med. — 2000. — V. 27. — P. 778—787.

De Souza B., Brunetti A., Fulham M.J. et al. Pituitary microadenomas: a PET study // Radiology. — 1990. — V.177. — P. 39—44.

Di Chiro G., DeLa Paz R.,Brooks R.A. et al. Glucose utilization of cerebral gliomas measured by 18-fluorodeoxyglucose and PET // Neurology. — 1982. — V. 32. — P. 1323—1329.

Di Chiro G., Hatazawa J., Katz D.A., Rizzoli H.V., De Michele D.J. Glucose utilization and intracranial meningiomas as an index of tumor agrressivity and probability of recurrence: a PET study // Radiology. — 1987. — V. 164. — P. 521—526.

Doyle W.K., Budinger T.F., Valk P.E. et al. Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography // J Comput Assist Tomogr. — 1987. — V. 11. — P. 563—570.

Eary J. Nuclear medicine in oncology diagnosis // Lancet. — 1999. — V. 354. — P. — 853—857.

Eary J.F., Mankoff D.A., Spence A.M. et al. 2-[c-11]-thymidine imaging of malignant brain tumors // Cancer Res. — 1999. — V. 59. — P. 615—621.

Ericson K., Blomqvist G., Bergstrom M. et al. Application of a kinetic model on the methionine accumulation in intracranial tumors studied with positron emission tomography // Acta Radiol. — 1987. — V. 28. — P. 505—509.

Fox P.T., Mintun M.A. Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity // J Nucl Med. — 1989. — V. 30. P. 141—149.

Fox P.T., Mintun M.A., Raichle M.E., Herscovitch P. A noninvasive approach to quantitative functional brain mapping with H2(15)O and positron emission tomography // J Cereb Blood Flow Metab. — 1984. — V. 4. — P. 329—333.

Francavilla T.L., Miletich R.S., Di Chiro G. et al. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas // J Neurosurg. — 1989. — V. 24. — P. 1—5.

Francavilla T.L., Miletich R.S., De Michele D. et al. Positron emission tomography of pituitary macroadenomas: hormone production and effects of therapies // J Neurosurg. — 1991. — V.28. — P. 826—833.

Gambhir S.S., Barrio J.R., Herschman H.R., Phelps M.E. Imaging expression: principles and assays // J Nucl Card. — 1999. — V. 6. — P. 219—233.

Ginos J.Z., Cooper A.J.L., Dhawan V. et al. [N-13] Cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors // J Nucl Med. — 1987. — V. 28. — P. 1844—1852.

Grierson J.R., Link J.M., Mathis C.A. et al. A radiosynthesis of fluorine-18 fluoromisonidazole // J Nucl Med. — 1989. — V. 30. — P. 343—350.

Guenther I., Wyer L., Knust E.J. et al. Radiosynthesis and quality assurance of 5-[124I]-iodo-2Т-deoxyuridine for functional PET imaging of cell proliferation // Nucl Med Biol. — 1998. — V. 25. — P. 359—365.

Hanson M.W., Glantz M.J., Hoffman J.M. et al. FDG-PET in the selection of brain lesions for biopsy // J Comput Assist Tomogr. — 1991. — V. 15. — P. 796—801.

Hara T., Kosaka N., Shinoura N., Kondo T. PET imaging of brain tumor with [methyl-11C]choline // J Nucl Med. — 1997. — V. 38. — P. 842—847.

Hoffman J.M., Waskin H.A., Schifter T. et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS // J Nucl Med. — 1993. — V. 34. — P. 567—575.

Husband J.E. Monitoring tumor response // Eur Radiol. — 1996. — V. 6. — P. 775—785.

Inoue T., Shibasaki T., Oriuchi N. et al.18Falfa-methyl tyrosine PET studies in patients with brain tumors // J Nucl Med. — 1999. — V. 40. — P. 399—405.

Ishiwata K., Takahashi T., Iwata R. et al. Tumor diagnosis by PET: potential of seven tracers examined in five experimental tumors including an artificial metastasis model // Nucl Med Biol. — 1992. — V. 19. — P. 611—618.

Ishiwata K., Kubota K., Murakami M. et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? // J Nucl Med. — 1993. — V. 34. — P. 1936—1943.

Janus T.J., Kim E.E., Tilbury R. et al. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors // Ann Neurol. — 1993. — V. 33. — P. 540—548.

Jones T. The role of positron emission tomography within the spectrum of medical imaging // Eur J Nucl Med. — 1996. — V. 23. — P. 207—211.

Junck L., Minoshima S., Ross D.A. et al. PET activation studies to localize cortical function in patients with brain tumors // Human Brain Mapping. — 1995. — V. 1. — 346 P.

Kameyama M., Ishiwata K, Tsurumi Y. et al. Clinical application of 18F-FUdR in glioma patients — PET study of nucleic acid metabolism // J Neuro-oncol. — 1995. — V. 23. — P. 53—61.

Kaschten B., Stevenaert A., Sadzot B. et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine // J Nucl Med. — 1998. — V. 39. — P. 778—785.

Katzenellenbogen J.A., Coleman R.E., Hawkins R.A. et al. Tumor receptor imaging: proceedings of the National Cancer Institute workshop, review of current work, and prospective for further injvestigations // Clin Cancer Res. — 1995. — V. 1. — P. 921—932.

Koh W., Rasey J.S. et al. Imaging of hypoxia in human tumors with [18-F] fluoro-isonidazole // Int J Radiat Oncol Biol Phys. — 1992. — V. 22. — P. 199—212.

Koh W., Bergmann K.S. et al. Evaluation of oxygenation status during fractionated radiotherapy in human non-small cell lung cancers using [18F] fluoromisonidazole positron emission tomography // Int J Radiat Oncol Biol Phys. — 1995. — V. 33. — P. 391—398.

Lucignani G., Losa M., Moresco R.M. et al. Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography with [18F]fluoro-ethyl-spiperone // Eur J Nucl Med. — 1997. — V. 24. — P.1149—1155.

MacLaren D.C., Gambhir S.S., Satyamurthy N. et al. Repetitive non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals // Gene Ther.—1999. — V.6. — P.785—791.

Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: a PET imaging of cellular proliferation and steroid receptors // Neoplasia. — 2000. — V. 2. — P. 71—88.

McCarthy D.W., Bass L.A., Cutler P.D. et al. High purity production and potential applications of copper-60 and copper-61 // Nucl Med Biol. — 1999. — V. 26. — P. 351—358.

Mineura K., Yashuda T., Kowada M. et al. PET evaluation of histologic malignancy in gliomas using oxygen-15 and fluorine-18-fluorodeoxyglucose // Neurol Res. — 1986. — V. 8. — P.164—168.

Mineura K., Sasajima T., Kowada M. et al. Perfusion and metabolism in predicting the survival of patients with cerebral gliomas // Cancer. — 1994. — V. 73. — P. 2386—2394.

Mintun M.A., Welch M.J., Siegel B.A. et al. Breast cancer: PET imaging of estrogen receptors // Radiology. — 1988. — V. 169. — P. 45—48.

Mintun M.A., Fox P.T., Raichle M.E. A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography // J Cereb Blood Flow Metab. — 1989. — V. 9. — N1. — P. 96—103.

Mintun M.A., Berger K.L., Dehdashti F. et al. Kinetic analysis of the novel hypoxic imaging agent [60Cu] ATSM in human neoplasms // J Nucl Med. — 2000. — V. 41. — P. 5. — 58P.

Momose T., Teramoto A., Nishikawa J. et al. Clinical application of 11C-NMSP to the patients with pituitary adenoma other than prolactinoma // Kaku Igaku. — 1993. — V. 30. — P. 627—35.

Monclus M., Luxen A., Cool V. et al. Development of a positron emission tomography radiopharmaceutical for imaging thymidine kinase gene expression: Synthesis and in vitro evaluation of 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl]guanine // Bioorg Med Chem. — 1997. — V. 7. — P. 1879—1882.

Moolten F.L. Suicide genes for cancer therapy // Sci Med. — 1997. — V. 4. — P. 16—25.

Muller R.A., Chugani H.T., Muzik O. et al. Language-related cerebro-cerebellar activation patterns after early brain damage: a 15O-water PET study // Human Brain Mapping. — 1995. — V.—1. — P.358.

Nariai T., Senda M., Ishii K. et al. Functional brain mapping with PET for glioma removal // Human Brain Mapping. — 1995. — V. 1. — P. 343.

Nariai T., Senda M., Ishii K. et al. Three-dimensional imaging of cortical structure, function and glioma for tumor resection // J Nucl Med. — 1997. — V. 38. — P. 1563—1568.

Nelson S.J., Day M.R., Buffone P.J. et al. Alignment of volume MR images and high resolution [18F]fluorodeoxyglucose PET images for the evaluation of patients with brain tumors // J Comput Assist Tomogr. — 1997. — V. 21. — P. 183—191.

Ogawa T., Kanno I., Shishido F. et al. Clinical value of PET with 18F-fluorodeoxuglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury // Acta Radiol. — 1991. — V. 32. — P. 197—202.

Ogawa T., Inugami A., Hatazawa J. et al. Clinical positron emission tomography for brain tumors: comparison of fluorodeoxyglucose F18 and L-methyl-11C-methionine // AJNR. — 1996. — V.17. — P. 345—353.

Pan G., Gambhir S.S., Phelps M.E. et al. Synthesis of fluorinated nucleosides for antisense oligodeoxynucleotide imaging with PET // J Nucl Med. — 1997. — V. 38. — P.134.

Pardo J.V., Fox P.T. Preoperative assessment of the cerebral hemispheric dominance for language with CBF PET // Human Brain Mapping. — 1993. — V. 1. — P. 57—68.

Patronas N.J., Di Chiro G., Brooks R.A. et al. [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain // Radiology. — 1982. — V. 144. — P. 885—889.

Patronas N.J., Di Chiro G., Kufta C. et al. Prediction of survival in glioma patients by means of PET // J Neurosurg. — 1985. — V. 62. — P. 816—822.

Price P., Harte R., Wells P. et al. The potential of tracer kinetic studies in drug development programs: a new investigational area for cancer research // Drug Inf J.—1997. — V.31. — P.1045—1049.

Ram Z., Culwer K.W., Oshiro E.M. et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells // Nature Med. — 1997. — V. 3. P. 1354—1361.

Rasey J.S., Koh W. et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [F-18] fluoromisonidazole: A pretherapy study of 37 patients // Int J Radiat Oncol Biol Phys. — 1996. — V. 36. — P. 417—428.

Roelcke U., Radu E.W., von Ammon K. et al. Alteration of blood-brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET // J Neurol Sci. — 1995. — V. 132. — P. 20—27.

Sasaki M., Kuwabara Y., Yoshida T. et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumors // Eur J Nucl Med.—1998. — V. 25. — P. 1261—1269.

Schifter T., Hoffman J.M., Hanson M.W. et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors//J Comput assist Tomogr.—1993. — V.17. — P.509—561.

Shand N., Weber F., Mariani L. et al. A plase 1—2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir // Human Gene Therapy. — 1999. — V. 10. — P. 2325—2335.

Shields A.F., Grierson J.R., Dohmen B.M. et al. Imaging proliferation in vivo with [18F] FLT and positron emission tomography // Nat Med. — 1998. — V. 4. — P. 1334—1336.

Shinoura N., Nishijima M., Hara T. et al. Brain tumors: detection with 11C-choline PET // Radiology. — 1997. — V. 202. — P. 497—503.

Silverman D.H.S., Hoh C.K., Setzer M.A. et al. Evaluating tumor biology and oncological disease with positron-emission tomography // Semin Radiat Oncol. — 1998. — V. 8. — P. 183—196.

Smith T.A. FDG uptake, tumor characteristics and response to therapy: a review // Nucl Med Commun. — 1998. — V. 19. — P. 97—105.

Strauss L. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnosis of oncological patients // Eur J Nucl Med. — 1996. — V. 23. — P. 1409—1415.

Strauss L., Conti P. The application of PET in clinical oncology // J Nucl Med. — 1991. — V. 32. — P. 623—647.

Tannock I.F., Hill R.P. The Basic Science of Oncology. McGraw-Hill, New York, 1992.

Ter-Pogossian M.M. The origins of positron emission tomography // Semin Nuc Med. — 1992. — V. 3. — P. 140—149.

Tjuvaev J.G., Finn R., Watanabe K. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: A potential method for monitoring clinical gene therapy // Cancer Res. — 1996. — V. 56. — P. 4087—4096.

Tyler J.L., Yamamoto Y.L., Diksic M. et al. Pharmacokinetics of superselective intraarterial and intravenous 11C-BCNU evaluated with PET // J Nucl Med. — 1986. — V. 27. — P. 775—780.

Vander Borght T, Pauwels S, Lambotte L et al. Brain tumor imaging with PET and 2-[carbon-11]thymidine // J Nucl Med. — 1994. — V. 35. — P. 974—982.

Vlasenko A.G., Beattie B.J., Krol G.S., Blasberg R.G. Spatial and volumetric relationship between FDG hypermetabolism and Gd-DTPA enhancement in patients with recurrent glioma // J Nuc Med. — 2000. — V. 41. — S. 5. — P. 217—218.

Vlasenko A.G., Thiessen B., Beattie B.J.et al. Evaluation of early response to SU101 target-based therapy in patients with recurrent supratentorial malignant gliomas using FDG PET and Gd-DTPA MRI // J Neuro-oncol. — 2000. — V. 46. — P. 249—259.

Weber G. Enzymology of cancer cells // N Engl J Med. — 1977. — V. 296. — P. 541—551.

West J., Fitzpatrick J.M., Wang M.Y et al. Comparison and evaluation of retrospective intermodality brain image registration techniques // J Comput Assist Tomogr. — 1997. — V. 21. — P. 554—566.

White A., Handler P., Smith E. Principles of Biochemistry. 5th ed. McGraw-Hill: New York; 1973. — 441P.

Willemsen A.T.M., Waarde A., van Paans A.M.J. et al. In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1—11C]tyrosine and PET // J Nucl Med. — 1995. — V. 36. — P. 411—419.

Woods R.P., Grafton S.T., Holmes C.J., Cherry S.R., Mazziotta J.C. Automated image registration: I. General methods and intrasubject, intramodality validation // J Comput Assist Tomogr. — 1998. — V. 22. — P. 139—152.

How to Cite

Vlassenko, A., Makeyev, S., & Mintun, M. Positron emission tomography in neurooncology: clinical applications and promising strategies. Ukrainian Neurosurgical Journal, (3), 29–37. Retrieved from https://theunj.org/article/view/56185

Issue

Section

Original articles