Modern bone cements for vertebroplasty: a literature review

Authors

Keywords:

vertebroplasty, bone cement, Palacos, minimally invasive spinal neurosurgery

Abstract

The aim of this article was to compare modern bone cements, which can be use for vertebroplasty. Vertebroplasty is a treatment that stabilizes a fractured vertebra by addition of bone cement. However, there is currently no information available on the optimal bone cement for injection into vertebral body. Different biomechanical propries, the strength, stiffness of the most popular cements using for vertebroplasty were compared according to data of literature. It was shown that Palacos has best biomechanical characteristics and it’s cement of choice for vertebroplasty.

References

Bai B., Jazrawi L., Jummer F.J. and Spivak, J. The use of injectable biodegradable calcium phosphate bone substitute for prophylactic augmentation of osteoporotic vertebrae and the treatment of vertebral compression fractures. Presented at the 45th Annual Meeting, Orthopaedic Research Society (Feb. 1—4, 1999). — Anaheim, California, 1999.

Barr J.D., Barr M.S., Lemley T.J. and McCann R.M. Percutaneous vertebroplasty for pain relief and spinal stabilization. — Spine, 2000. — V.25. — P.923—928.

Belkoff S.M., Mathis J.M., Fenton D.C. et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. — Spine, 2001. — V.26. P.151.

Belkoff S.M., Mathis J.M., Jasper L.E., Deramond H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. — Spine, 2001. — V.26(14). — P.1542—1546.

Belkoff S.M., Mathis J.M., Jasper L.E., Deramond H. The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior. — Spine, 2001. — V.26(14). — P.1537—1541.

Charnley J. Acrylic Cement in Orthopaedic Surgery. — Edinburgh, London: Churchill Livingstone, 1972.

Charnley J. Low Friction Arthroplasty of the Hip: Theory and Practice. — Berlin, Heidelberg: Springer-Verlag, 1979.

Cenni E., Granchi D., Ciapetti G. et al. Interleukin-6 expression by osteoblast-like MG63 cells challenged with four acrylic bone cements // J Biomater. Sci. Polym. Ed. — 2001. — V.12(2). — P.243—253.

Cenni E., Granchi D., Ciapetti G. et al. Evaluation of the effect of seven acrylic bone cements on erythrocytes and plasmatic phase of coagulation // Biomaterials. — 2001. — V.22(11). — P.1321—1326.

Cortet B., Cotten A., Boutry N. et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: An open prospective study // Journal of Rheumatology. — 1999. — V.26. — P.2222—2228.

Cortet B., Cotten A., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma // Review of Rhumatology English Edition. — 1997. — V.64. — P.177—183.

Cotten A., Dewatre F., Cortet B. et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: Effects of the percentage of lesion filling and the leakage of methy methacrylate at clinical follow-up // Radiology. — 1996. V. 200. — P.525—530.

Cyteval C., Sarrabere M.P., Roux J.O. et al. Acute osteoporotic vertebral collapse: Open study on percutaneous injections of acrylic surgical cement in 20 patients // American Journal of Roentgenology. — 1999. — V.173. — P.1685—1690.

Dahl O.E., Garvik L.J., Lyberg T. Toxic effects of methylmethacrylate monomer on leukocytes and endothelial cells in vitro // Acta Orthop Scand. — 1994. — V.65. — P.147—153.

Dean J.R., Ison K.T., Gishen P. The strengthening effect of percutaneous vertebroplasty // Clin Radiol. — 2000. — V.55(6). — P.471—476.

Deramond H., Wright N.T. and Belkoff S.M. Temperature elevation caused by bone cement polymerization during vertebroplasty // Bone. — 1999. — V.25. — P.17—21.

Deramond H., Depriester C., Galibert P., Le Gars D. Percutaneous Vertebroplasty with Polymethylmethacrylate // Radiologic Clinics of North America. — 1998. — V.36. — P.533—546.

Dickman C., Rosenthal D. Thoracoscopic spine surgery // Theime Medical Publishers. — 1998.

Dunne N.J., Orr J.F. Influence of mixing techniques on the physical properties of acrylic bone cement // Biomaterials. — 2001. — V.22(13). — P.1819—1826.

Gangi A., Kastler B.A., Dietmann J.L. Value of percutaneous injection of acrylic cement using a pressure regulator // J. Radiol. — 1997. — V.78(5). — P.393—394.

Fessler R.G., Regis W.H. Current technique in spinal stabilisation. — New-York: McGraw-Hill, 1996

Fries I.B. Contact dermatitis in surgeons from methyl methacrylate bone cement // J. Bone Joint Surg. — 1975. — V.57. — P.547—549.

Fritsch E.W. Static and fatigue properties of two new low-viscosity PMMA bone cements improved by vacuum mixing // J. Biomed. Mater. Res. — 1996. — V.31(4). — P.451—456.

FDA: Class II Special Controls Guidance Document: Polymethylmethacrylate (PMMA) Bone Cement Final Guidance for Industry. — 2001. — V.27.

Harper E.J., Bonfield W. Tensile characteristics of ten commercial acrylic bone cements // J. Biomed. Mater. Res. — 2000. — V.53(5). — P.605—616.

Heini P.F., Berlemann U., Kaufmann M. et al. Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements // Eur. Spine J. — 2001. — V.10(2). — P.164—171.

Jasper L.E., Deramond H., Mathis J.M., Belkoff S.M. The effect of monomer-to-powder ratio on the material properties of cranioplastic // Bone. — 1999. V.25. — P.27—29.

Jasper L.E., Deramond H., Mathis J.M., Belkoff S.M. Material properties of various cements for use with vertebroplasty // J. Material Sci, Material Med. in press.

Jensen M.E., Evans A.J., Mathis, J.M. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: Technical aspects // American Journal of Neuroradiology. — 1997. — V.18. — P.1897—1904.

Jensen M.E., Dion J.E. Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures // Neuroimaging Clin. N. Am. — 2000. — V.10(3). — P.547—568.

Kaltenkirchen N., Fritsch E., Rupp S., Kraus P. Mechanical properties of new low viscosity bone cements - can be improved by vacuum mixing // Unfallchirurg. — 1996. — V.99(7). — P.492—497.

Kaltenkirchen N., Fritsch E., Rupp S., Kraus P. Does vacuum-mixing improve the fatigue properties of high-viscosity poly(methyl-methacrylate) (PMMA) bone cement? Comparison between two different evacuation methods // Arch. Orthop. Trauma Surg. — 1996. — V.115(3—4). — P.131—135.

Knight G. Paraspinal acrylic inlays in the treatment of cervical and lumbar spondylosis and other conditions // Lancet. — 1959. — V.2. — P.147—149.

Liebschner M.A., Rosenberg W.S., Keaveny T.M. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty // Spine. — 2001. — V.26(14). — P.1547—1554.

Lozewicz S., Davison A.G., Hopkirk A. et al. Occupational asthma due to methyl methacrylate and cyanoacrylates // Thorax. — 1985. — P.40. — P.836—839.

Lu W.S., Leong J.C.Y., Li Y.W. et al. Injectable bone cement for spinal surgery: A developmental and an in vitro biomechanical & morphological study. Presented at the 46th Annual Meeting, Orthopaedic Research Society. — Orlando, Florida, 1999.

Lowquet E., Thibaut R. Thibaut H.Surgical treatment of spinal metastasis // Acta Orthopedica Belgica. — 1993. — V.59. — P.79—82.

Liu C., Green S.M., Watkins N.D., Gregg P.J., McCaskie A.W. Some failure modes of four clinical bone cements // Proc. Inst. Mech. Eng. (H). — 2001. — P.215(4). — P.359—366.

Martin J.B., Jean B., Sugiu K. et al. Vertebroplasty: Clinical experience and follow-up results // Bone. — 1999. —V.25.—P.11—15.

Marez T., Edme J.L., Boulenguez C. Bron-chial symptoms and respiratory function in workers exposed to methylmethacrylate // Br. J. Indust. Med. — 1993. — V.50. — P.894—897.

Mathis J.M., Petri M. and Naff N. :Percutaneious vertebroplasty treatment of steroid-induced osteoporotic compression fractures // Arthritis & Rheumatism. — 1998. — V.41. — P.171—175.

McCascie A.W., Richardson J.B. Further uses of polymethylmethacrylate in orthopaedic surgery // R. Coll. Surg. Edinb. — 1998. — V.43. — P.37—39.

McLaughlin R.E., Barkalow J.A., Allen M.S. Pulmonary toxicity of methylmethacrylate vapors: an environmental study // Arch. En-viron Health. — V.1979. — V.34. — P.336—338.

Mousa W.F., Kobayashi M., Shinzato S. et al. Biological and mechanical properties of PMMA-based bioactive bone cements. Biological and mechanical properties of PMMA-based bioactive bone cements // Biomaterials. — 2000. — V.21(21). — P.2137—2146.

Nijhof M.W., Dhert W.J., Fleer A. et al. Prophylaxis of implant-related staphylococcal infections using tobramycin-containing bone cement // J. Biomed. Mater. Res. — 2000. — V.52(4). — P.754—761.

Ramarattan N.N., Frassica F.J., Inoue N. et al. Biomechanical properties of taxol-loaded bone cement. Presented at the 45th Annual Meeting, Orthopaedic Research Society. — Anaheim, California, 1999.

Del Real R.P., Padilla S., Vallet-Regi M. Gentamicin release from hydroxyapatite/poly(ethyl methacrylate) /poly (methyl methacrylate) composites // J. Biomed. Mater. Res. — 2000. — V.52(1). — P.1—7.

San Millan Ruiz D., Burkhardt K., Jean B. et al. Pathology findings with acrylic implants // Bone. — 1999. — V.25. — P.85—90.

Skalli W., Robin S., Lavaste F., Dubousset J. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model // Spine. — 1993. — V.18(5). — P.536—45.

Schildhauer T.A., Bennett A.P., Wright T.M. et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: Biomechanical evaluation of a minimally invasive technique // Journal of Orthopaedic Research. — 1999. — V.17. — P.67—72.

Tomeh A.G., Mathis J.M., Fenton D.C. et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures // Spine. — 1999. — V.24. P. — P.1772—1776.

van Helden H., Oner F., Dhert W. and Verbout A. Direct restoration of high energy thoracolumbar compression fractures with inflatable bone tamp reduction and injectable CaP bone cement to prevent recurrent kyphosis. Presented at the 46th Annual Meeting, Orthopaedic Research Society. — Orlando, Florida, 1999.

Weill A., Chiras J., Simon J.M. et al. Spinal metastases: Indications for and results of percutaneous injection of acrylic surgical cement // Radiology. — 1996. V.199. — P.241—247.

Wang J.S., Toksvig-Larsen S., Muller-Wille P., Fransen H. Is there any difference between vacuum mixing systems in reducing bone cement porosity // J. Biomed. Mater. Res. — 1996. — V.33(2). — P.115—119.

Wheater R.H. Hazard of methyl methacrylate to operating room personnel // JAMA. — 1976. — P.235:—2652.

Wilson D.R., Myers E.R., Mathis J. et al. The effect of cementation using two new delivery techniques on the stability of spinal wedge fractures // Presented at the 45th Annual Meeting, Orthopaedic Research Society. —Anaheim, California, 1999.

Wimhurst J.A., Brooks R.A., Rushton N. Inflammatory responses of human primary macrophages to particulate bone cements in vitro // J. Bone Joint. Surg. Br. — 2001. — V.83(4). — P.588—592.

How to Cite

Pedachenko, E., & Kushchayev, S. Modern bone cements for vertebroplasty: a literature review. Ukrainian Neurosurgical Journal, (4), 24–31. Retrieved from https://theunj.org/article/view/53887

Issue

Section

Review articles