Surgical management of traumatic irreducible spondyloptosis of thoracolumbar junction

Authors

DOI:

https://doi.org/10.25305/unj.228926

Keywords:

thoracolumbar junction, irreducible spondyloptosis, isolated posterior approach

Abstract

Introduction. The thoracolumbar junction is the most common location of traumatic spinal injuries. It accounts for 50-60% of all thoracic and lumbar spine injuries. Spondyloptosis is rather rare, but one of the most severe types of traumatic injury, that is characterized by a severe damage of spinal axis in one or more planes. Traumatic spondyloptosis is classified as reducible and irreducible, depending on the possibility of intraoperative restoration of the spinal axis without resection of the damaged vertebra.

Objective. To determine the optimal surgical technique for traumatic irreducible spondyloptosis of thoracolumbar junction.

Materials and methods. A retrospective analysis of the patients’ database treated at the Romodanov Neurosurgery Institute, Ukraine was performed over the past 4 years (2017 to 2020) to identify all cases with traumatic irreducible spondyloptosis of the thoracolumbar junction.

Results. Treatment outcomes of five patients aged 18 to 52 years (mean age 31.2 years) were analyzed. The minimum period from the moment of injury to surgery was 14 days, the maximum was 3 months and 2 days (on average 42.2 days). At the time of admission all patients had a neurological deficit that corresponds to the functional class A on the American spine injury associatin ASIA scale of severity of spinal cord injury. The TLICS (Thoracolumbar injury classification and severity) score was 8 points. All the patients had the injury of lateral spondyloptosis: in three cases as an isolated displacement only in the coronal plane, in two – as a combined one - in the coronal and sagittal plane. Surgical intervention in all cases was performed from the posterior approach. As a body replacement system in 2 patients, a vertical cylindrical implant (Mesh) was used, in 3 patients - a telescopic body replacing implant. The method of bicortical implantation of pedicle screws was applied. The transpedicular system was strengthened by two cross links of the rod-to-rod type. In all cases the restoration of spinal axis was achieved in both the coronal and sagittal planes. Follow-up examinations were carried out 2, 6 and 12-18 months of the postoperative period. Regression of neurological disorders was registered in two patients, in one case to ASIA B, in the other to ASIA C.

Conclusions. Isolated posterior approach has demonstrated high efficacy in the surgical management of traumatic irreducible spondyloptosis of the thoracolumbar junction both in restoring the axis of the spine and in ensuring the stability of fusion.

Author Biographies

Oleksii S. Nekhlopochyn, Romodanov Neurosurgery Institute, Kyiv, Ukraine

Spine Surgery Department

Vadim V. Verbov, Romodanov Neurosurgery Institute, Kyiv, Ukraine

Restorative Neurosurgery Department

Ievgen V. Cheshuk, Romodanov Neurosurgery Institute, Kyiv, Ukraine; Bogomolets National Medical University, Kyiv, Ukraine

Restorative Neurosurgery Department;  Neurosurgery Department

Milan V. Vorodi, Romodanov Neurosurgery Institute, Kyiv, Ukraine

Restorative Neurosurgery Department

References

1. Rajasekaran S, Kanna RM, Shetty AP. Management of thoracolumbar spine trauma: An overview. Indian J Orthop. 2015 Jan-Feb;49(1):72-82. [CrossRef] [PubMed] [PubMed Central]

2. Wood KB, Li W, Lebl DR, Ploumis A. Management of thoracolumbar spine fractures. Spine J. 2014 Jan;14(1):145-64. [CrossRef] [PubMed]

3. Gertzbein SD. Scoliosis Research Society. Multicenter spine fracture study. Spine (Phila Pa 1976). 1992 May;17(5):528-40. [CrossRef] [PubMed]

4. Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, Pommer A, Ulrich C, Wagner S, Weckbach A, Wentzensen A, Wörsdörfer O. Operative Behandlung von Verletzungen des thorakolumbalen Ubergangs. Teil 1: Epidemiologie [Surgical treatment of injuries of the thoracolumbar transition. 1: Epidemiology]. Unfallchirurg. 1999 Dec;102(12):924-35. German. [CrossRef] [PubMed]

5. Gitelman A, Most MJ, Stephen M. Traumatic thoracic spondyloptosis without neurologic deficit, and treatment with in situ fusion. Am J Orthop (Belle Mead NJ). 2009 Oct;38(10):E162-5. [PubMed]

6. Maynard FM Jr, Bracken MB, Creasey G, Ditunno JF Jr, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord. 1997 May;35(5):266-74. [CrossRef] [PubMed]

7. Vaccaro AR, Lehman RA Jr, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG, Fisher C, Zeiller SC, Anderson DG, Bono CM, Stock GH, Brown AK, Kuklo T, Oner FC. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005 Oct 15;30(20):2325-33. [CrossRef] [PubMed]

8. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L; AOSpine Spinal Cord Injury & Trauma Knowledge Forum. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013 Nov 1;38(23):2028-37. [CrossRef] [PubMed]

9. Neugebauer F. Aetiologie der sogenannten Spondylolisthesis. Archiv für Gynaekologie. 1882;20(1):133-184. [CrossRef]

10. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976). 1983 Nov-Dec;8(8):817-31. [CrossRef] [PubMed]

11. Garg M, Kumar A, Sawarkar DP, Singh PK, Agarwal D, Kale SS, Mahapatra AK. Traumatic Lateral Spondyloptosis: Case Series. World Neurosurg. 2018 May;113:e166-e171. [CrossRef] [PubMed]

12. Meneghini RM, DeWald CJ. Traumatic posterior spondyloptosis at the lumbosacral junction. A case report. J Bone Joint Surg Am. 2003 Feb;85(2):346-50. [CrossRef] [PubMed]

13. Kumar S, Patralekh MK, Boruah T, Kareem SA, Kumar A, Kumar R. Thoracolumbar fracture dislocation (AO type C injury): A systematic review of surgical reduction techniques. J Clin Orthop Trauma. 2020 Sep-Oct;11(5):730-741. [CrossRef] [PubMed] [PubMed Central]

14. Bellew MP, Bartholomew BJ. Dramatic neurological recovery with delayed correction of traumatic lumbar spondyloptosis. Case report and review of the literature. J Neurosurg Spine. 2007 Jun;6(6):606-10. [CrossRef] [PubMed]

15. Landau B, Ransohoff J. Late surgery for incomplete traumatic lesions of the conus medullaris and cauda equina. J Neurosurg. 1968 Mar;28(3):257-61. [CrossRef] [PubMed]

16. Wilson JR, Singh A, Craven C, Verrier MC, Drew B, Ahn H, Ford M, Fehlings MG. Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord. 2012 Nov;50(11):840-3. [CrossRef] [PubMed]

17. Mishra A, Agrawal D, Gupta D, Sinha S, Satyarthee GD, Singh PK. Traumatic spondyloptosis: a series of 20 patients. J Neurosurg Spine. 2015;22(6):647-652. [CrossRef] [PubMed]

18. Wang F, Zhu Y. Treatment of complete fracture-dislocation of thoracolumbar spine. J Spinal Disord Tech. 2013;26(8):421-426. [CrossRef] [PubMed]

19. Stahel PF, VanderHeiden T, Flierl MA, Matava B, Gerhardt D, Bolles G, Beauchamp K, Burlew CC, Johnson JL, Moore EE. The impact of a standardized "spine damage-control" protocol for unstable thoracic and lumbar spine fractures in severely injured patients: a prospective cohort study. J Trauma Acute Care Surg. 2013 Feb;74(2):590-6. [CrossRef] [PubMed]

20. Sunami Y, Imai T. Use of the halo-pelvic apparatus for treatment of fracture-dislocations of the thoracic and lumbar spines accompanied by paraplegia. Acta medica Okayama. 1977;31(6):361-368. [PubMed]

21. Hutchinson MR, Dall BE. Fracture-dislocation of the thoracic and lumbar spine: advantages of halo-bifemoral traction. J Spinal Disord. 1993;6(6):482-488. [CrossRef] [PubMed]

22. Erdem MN, Oltulu I, Karaca S, Sari S, Aydogan M. Intraoperative Halo-Femoral Traction in Surgical Treatment of Adolescent Idiopathic Scoliosis Curves between 70 degrees and 90 degrees : Is It Effective? Asian Spine J. 2018;12(4):678-685. [CrossRef] [PubMed]

23. Zhang HQ, Gao QL, Ge L, Wu JH, Liu JY, Guo CF, Liu SH, Lu SJ, Li JS, Yin XH, Li F. Strong halo-femoral traction with wide posterior spinal release and three dimensional spinal correction for the treatment of severe adolescent idiopathic scoliosis. Chin Med J (Engl). 2012 Apr;125(7):1297-302. [PubMed]

24. Rahimizadeh A, Rahimizadeh A. Management of traumatic double-level spondyloptosis of the thoracic spine with posterior spondylectomy: case report. J Neurosurg Spine. 2015;23(6):715-720. [CrossRef] [PubMed]

25. Sekhon LH, Sears W, Lynch JJ. Surgical management of traumatic thoracic spondyloptosis: review of 2 cases. J Clin Neurosci. 2007;14(8):770-775. [CrossRef] [PubMed]

26. Zhu Q, Shi F, Cai W, Bai J, Fan J, Yang H. Comparison of Anterior Versus Posterior Approach in the Treatment of Thoracolumbar Fractures: A Systematic Review. International surgery. 2015;100(6):1124-1133. [CrossRef] [PubMed]

27. Ren EH, Deng YJ, Xie QQ, Li WZ, Shi WD, Ma JL, Wang J, Kang XW. [Anterior versus posterior decompression for the treatment of thoracolumbar fractures with spinal cord injury:a Meta-analysis]. China Journal of Orthopaedics and Traumatology. 2019 Mar 25;32(3):269-277. Chinese. [CrossRef] [PubMed]

28. Jin YM, Yang D, Shao HY, Zhang J, Huang YZ, Chen JP, Li XL. [Single midline posterior approach for 360 degree decompression and internal fixation with interbody bone graft fusion for severe thoracolumbar spinal fractures]. Zhongguo Gu Shang. 2013 Nov;26(11):901-6. China Journal of Orthopaedics and Traumatology. [PubMed]

29. Paulo D, Semonche A, Tyagi R. Novel method for stepwise reduction of traumatic thoracic spondyloptosis. Surg Neurol Int. 2019;10:23. [CrossRef] [PubMed]

30. Mohi Eldin MM, Ali AM. Lumbar transpedicular implant failure: a clinical and surgical challenge and its radiological assessment. Asian Spine J. 2014;8(3):281-297. [CrossRef] [PubMed]

31. Liu YJ, Chang MC, Wang ST, Yu WK, Liu CL, Chen TH. Flexion-distraction injury of the thoracolumbar spine. Injury. 2003;34(12):920-923. [CrossRef] [PubMed]

32. Farrokhi MR, Razmkon A, Maghami Z, Nikoo Z. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures. Eur Spine J. 2010;19(10):1651-1656. [CrossRef] [PubMed]

33. Jindal R, Jasani V, Sandal D, Garg SK. Current status of short segment fixation in thoracolumbar spine injuries. J Clin Orthop Trauma. 2020;11(5):770-777. [CrossRef] [PubMed]

34. McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am. 1993;75(2):162-167. [CrossRef] [PubMed]

35. McLain RF. The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine (Phila Pa 1976). 2006;31(11 Suppl):S70-79; discussion S104. [CrossRef] [PubMed]

36. McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine (Phila Pa 1976). 1994;19(15):1741-1744. [CrossRef] [PubMed]

37. Chokshi JJ, Shah M. Outcomes of Including Fracture Level in Short- Segment Fixation for Th oracolumbar Fracture Dislocation. Asian Spine J. 2019;13(1):56-60. [CrossRef] [PubMed]

38. Krag MH, Beynnon BD, Pope MH, DeCoster TA. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord. 1988;1(4):287-294. [CrossRef] [PubMed]

39. Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976). 1997 Nov 1;22(21):2504-9; discussion 2510. [CrossRef] [PubMed]

40. Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM. Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. 2015 Apr;28(3):E133-9. [CrossRef] [PubMed]

41. Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J. 2001;1(6):408-414. [CrossRef] [PubMed]

42. McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS. Characteristics of pedicle screw loading. Effect of surgical technique on intravertebral and intrapedicular bending moments. Spine (Phila Pa 1976). 1999;24(1):18-24, discussion 25. [CrossRef] [PubMed]

43. Xu C, Hou Q, Chu Y, Huang X, Yang W, Ma J, Wang Z. How to improve the safety of bicortical pedicle screw insertion in the thoracolumbar vertebrae: analysis base on three-dimensional CT reconstruction of patients in the prone position. BMC Musculoskelet Disord. 2020 Jul 7;21(1):444. [CrossRef] [PubMed] [PubMed Central]

44. Foxx KC, Kwak RC, Latzman JM, Samadani U. A retrospective analysis of pedicle screws in contact with the great vessels. J Neurosurg Spine. 2010;13(3):403-406. [CrossRef] [PubMed]

45. Kim TH, Lee SH, Yang JH, Hong JY, Suh SW. Clinical significance of superior articular process as a reference point for free-hand pedicle screw insertion in thoracic spine. Medicine (Baltimore). 2018;97(7):e9907. [CrossRef] [PubMed]

46. Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976). 2003 Sep 15;28(18):2058-65. [CrossRef] [PubMed]

47. Shibasaki Y, Tsutsui S, Yamamoto E, Murakami K, Yoshida M, Yamada H. A bicortical pedicle screw in the caudad trajectory is the best option for the fixation of an osteoporotic vertebra: An in-vitro experimental study using synthetic lumbar osteoporotic bone models. Clin Biomech (Bristol, Avon). 2020;72:150-154. [CrossRef] [PubMed]

48. Lynn G, Mukherjee DP, Kruse RN, Sadasivan KK, Albright JA. Mechanical stability of thoracolumbar pedicle screw fixation. The effect of crosslinks. Spine (Phila Pa 1976). 1997;22(14):1568-1572; discussion 1573. [CrossRef] [PubMed]

Published

2021-06-27

How to Cite

Nekhlopochyn, O. S., Verbov, V. V., Cheshuk, I. V., & Vorodi, M. V. (2021). Surgical management of traumatic irreducible spondyloptosis of thoracolumbar junction. Ukrainian Neurosurgical Journal, 27(2), 56–64. https://doi.org/10.25305/unj.228926

Issue

Section

Original articles