Cerebrospinal fluid flow. Part 1. Classical theory and its evolution

Authors

DOI:

https://doi.org/10.25305/unj.134714

Keywords:

cerebrospinal fluid, cerebrospinal fluid flow, classical theory, evolution

Abstract

Cerebrospinal fluid plays a huge physiological role in the normal functioning of the human CNS. Its changes serve as a kind of indicator of a significant number of pathological processes. However, despite such importance, the analysis of the literature demonstrates rather a small number of works devoted to a detailed description of the mechanisms of cerebral fluid flow. In the era of significant development of experimental techniques, the use of electron microscopy, radioisotope and immunological methods, many aspects of cerebrospinal fluid flow remain unexplored. The presented review is an attempt to order the available data and to reflect the evolution of ideas about cerebrospinal fluid flow in the historical aspect, relying on known publications.

Author Biographies

Ievgenii I. Slynko, Romodanov Neurosurgery Institute, Kyiv

Department of Spine Surgery

Alexey S. Nekhlopochin, Romodanov Neurosurgery Institute, Kyiv

Department of Spine Surgery

References

1. Deisenhammer F, Sellebjerg F, Teunissen CE, Tumani H, eds. Cerebrospinal Fluid in Clinical Neurology. Cham: Springer International Publishing; 2015. [CrossRef]

2. Milhorat TH. The third circulation revisited. J Neurosurg. 1975 Jun;42(6):628-45. [PubMed]

3. McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983 Sep;59(3):369-83. [PubMed]

4. Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011 Jan 18;8(1):7. [CrossRef] [PubMed] [PubMed Central]

5. Davson H. Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev. 1966:238-59. [PubMed]

6. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008 May 14;5:10. [CrossRef] [PubMed] [PubMed Central]

7. Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M, Palha JA. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis. 2017 Nov;107:32-40. [CrossRef] [PubMed]

8. Dandy WE. Experimental hydrocephalus. Ann Surg. 1919 Aug;70(2):129-42. [PubMed] [PubMed Central]

9. Milhorat TH. Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974 Oct;139(4):505-8. [PubMed]

10. Oresković D, Klarica M, Vukić M. The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosci Lett. 2002 Jul 19;327(2):103-6. [PubMed]

11. Welch K. Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol. 1963 Sep;205:617-24. [PubMed]

12. Pollay M. Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg. 1975 Jun;42(6):665-73. [PubMed]

13. Pollay M, Stevens A, Estrada E, Kaplan R. Extracorporeal perfusion of choroid plexus. J Appl Physiol. 1972 May;32(5):612-7. [PubMed]

14. Cserr HF. Physiology of the choroid plexus. Physiol Rev. 1971 Apr;51(2):273-311. [PubMed]

15. Bering EA Jr. Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol. 1959 Oct;197:825-8. [PubMed]

16. Bering EA Jr, Sato O. Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963 Dec;20:1050-63. [PubMed]

17. Pollay M, Curl F. Secretion of cerebrospinal fluid by the ventricular ependymal of the rabbit. Am J Physiol. 1967 Oct;213(4):1031-8. [PubMed]

18. Sonnenberg H, Solomon S, Frazier DT. Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967 Apr;124(4):1316-20. [PubMed]

19. Bradbury MW. Physiopathology of the blood-brain barrier. Adv Exp Med Biol. 1976;69:507-16. [PubMed]

20. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004 Sep;45(4):545-52. [PubMed]

21. Cserr HF. Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci. 1988;529:9-20. [PubMed]

22. Davson H, Domer FR, Hollingsworth JR. The mechanism of drainage of the cerebrospinal fluid. Brain. 1973 Jun;96(2):329-36. [PubMed]

23. Key A, Retzius G. Studien in Der Anatomie Des Nervensystems Und Des Bindegewebes. Stockholm: Norstedt & Sцner; 1903. https://archive.org/details/BIUSante_08318x01

24. Weed LH. Studies on Cerebro-Spinal Fluid. No. II : The Theories of Drainage of Cerebro-Spinal Fluid with an Analysis of the Methods of Investigation. J Med Res. 1914 Sep;31(1):21-49. [PubMed] [PubMed Central]

25. Weed LH. Studies on Cerebro-Spinal Fluid. No. III : The pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res. 1914 Sep;31(1):51-91. [PubMed] [PubMed Central]

26. Weed LH. Studies on Cerebro-Spinal Fluid. No. IV : The dual Source of Cerebro-Spinal Fluid. J Med Res. 1914 Sep;31(1):93-118.11. [PubMed] [PubMed Central]

27. Levine JE, Povlishock JT, Becker DP. The morphological correlates of primate cerebrospinal fluid absorption. Brain Res. 1982 Jun 3;241(1):31-41. [PubMed]

28. Welch K, Pollay M. Perfusion of particles through arachnoid villi of the monkey. Am J Physiol. 1961 Oct;201:651-4. [PubMed]

29. Courtice FC, Simmonds WJ. The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci. 1951 Jul;29(4):255-63. [PubMed]

30. Boulton M, Flessner M, Armstrong D, Hay J, Johnston M. Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol. 1998 Jan;274(1 Pt 2):R88-96. [PubMed]

31. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981 Apr;240(4):F329-36.[PubMed]

32. Brinker T, Lьdemann W, Berens von Rautenfeld D, Samii M. Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol. 1997 Nov;94(5):493-8. [PubMed]

33. Klarica M, Miљe B, Vladić A, Radoљ M, Oreљković D. "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013 Sep 17;248:278-89. [CrossRef] [PubMed]

34. Masserman JH. Cerebrospinal hydrodynamics IV. Clinical experimental studies. Arch NeurPsych. 1934;32(3):523–553. [CrossRef]

35. Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2001 Nov 27;57(10):1763-6. [PubMed]

36. Heisey SR, Held D, Pappenheimer JR. Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962 Nov;203:775-81. [PubMed]

37. Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966 Oct;25(4):430-6. [PubMed]

38. Cutler RW, Page L, Galicich J, Watters GV. Formation and absorption of cerebrospinal fluid in man. Brain. 1968;91(4):707-20. [PubMed]

39. Lorenzo AV, Page LK, Watters GV. Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970;93(4):679-92. [PubMed]

40. Rottenberg DA, Deck MD, Allen JC. Metrizamide washout as a measure of CSF bulk flow. Neuroradiology. 1978;16:203-6. [PubMed]

41. Black PM. Harvey Cushing at the Peter Bent Brigham Hospital. Neurosurgery. 1999 Nov;45(5):990-1001. [PubMed]

42. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics. 2007 Jul-Aug;27(4):1071-86. [PubMed]

43. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990 Jun;170:111-23. [PubMed] [PubMed Central]

44. Woollam DH, Millen JW. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955 Apr;89(2):193-200. [PubMed] [PubMed Central]

45. Jones EG. On the mode of entry of blood vessels into the cerebral cortex. J Anat. 1970 May;106(Pt 3):507-20. [PubMed] [PubMed Central]

46. Bechmann I, Kwidzinski E, Kovac AD, Simbьrger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R. Turnover of rat brain perivascular cells. Exp Neurol.2001 Apr;168(2):242-9. [PubMed]

47. Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010 Jan 1;58(1):1-10. [CrossRef] [PubMed]

48. Ge S, Song L, Pachter JS. Where is the blood-brain barrier ... really? J Neurosci Res. 2005 Feb 15;79(4):421-7. [PubMed]

49. Krisch B, Leonhardt H, Oksche A. Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984;238(3):459-74. [PubMed]

50. Chan P, Meerdink DJ, Uchizono JA. Potential role of the Virchow Robin space in the pathogenesis of bacterial meningitis. Med Hypotheses. 2017 Nov;109:114-118. [CrossRef] [PubMed]

51. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014 May 1;11:10. [CrossRef] [PubMed] [PubMed Central]

52. Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist. 2018 May 1:1073858418775027. [CrossRef] [PubMed]

53. Reith W, HauЯmann A. [Importance of Virchow-Robin spaces]. Radiologe. 2018 Feb;58(2):142-147. German. [CrossRef] [PubMed]

54. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985 Feb 4;326(1):47-63. [PubMed]

55. Ichimura T, Fraser PA, Cserr HF. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991 Apr 5;545(1-2):103-13. [PubMed]

56. Barshes N, Demopoulos A, Engelhard HH. Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005;125:1-16. [PubMed]

57. Hutchings M, Weller RO. Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986 Sep;65(3):316-25. [PubMed]

58. Alcolado R, Weller RO, Parrish EP, Garrod D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol ApplNeurobiol. 1988 Jan-Feb;14(1):1-17. [PubMed]

59. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K. The "perivascular pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006 Jul;14(1):69-78. [PubMed] [PubMed Central]

60. Weller RO, Kida S, Zhang ET. Pathways of fluid drainage from the brain--morphological aspects and immunological significance in rat and man. Brain Pathol. 1992 Oct;2(4):277-84. [PubMed]

61. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008 Apr;34(2):131-44. [CrossRef] [PubMed]

62. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009 Jan;117(1):1-14. [CrossRef] [PubMed]

63. Weller RO, Galea I, Carare RO, Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology. 2010 Sep;17(4):295-306. [CrossRef] [PubMed]

64. Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011 Apr;121(4):431-43. [CrossRef] [PubMed]

65. Sykovб E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008 Oct;88(4):1277-340. [CrossRef] [PubMed] [PubMed Central]

66. Cserr HF, Depasquale M, Patlak CS, Pullen RG. Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann N Y Acad Sci. 1986;481:123-34. [PubMed]

Published

2018-09-28

How to Cite

Slynko, I. I., & Nekhlopochin, A. S. (2018). Cerebrospinal fluid flow. Part 1. Classical theory and its evolution. Ukrainian Neurosurgical Journal, (3), 15–23. https://doi.org/10.25305/unj.134714

Issue

Section

Review articles